According to McKinsey data, more than $3.5 trillion will be invested in green hydrogen, carbon capture, renewable energy, and other projects that are working toward net-zero transition by 2050. Photo via

McKinsey acquires Houston-area co. to enhance sustainability services

M&A Moves

A global management consulting company has executed on an acquisition key to its plans amid the energy transition.

McKinsey & Company announced the acquisition of Strategic Estimating Systems, a Sugar Land-based consulting firm specializing in cost estimation for oil, gas, and chemical process industries. The acquisition provides McKinsey with enhanced benchmarking capabilities across capital project management — especially within the energy transition.

The terms of the deal were not disclosed.

"The capital projects ecosystem is presented with a once-in-a-generation chance to aid in transforming economies to achieve net zero," Justin Dahl, partner and global leader of McKinsey & Company's Capital Analytics, says in a news release. "By integrating SES's unmatched capabilities, we're not only enhancing our sustainability services, such as carbon capture, but also expanding the scope of our existing Capital Excellence capabilities to crucial industries and wider geographies."

"This allows our clients to gain an independent perspective on value, cost, and timing at every phase of the capital project lifecycle, thereby improving bottom-up estimating," Dahl continues. "Committed to innovation and excellence, this acquisition empowers us to explore new value dimensions and further refine our expertise in bottom-up estimating for our clients."

According to McKinsey data, more than $3.5 trillion will be invested in green hydrogen, carbon capture, renewable energy, and other projects that are working toward net-zero transition by 2050.

"We are thrilled to join McKinsey and expand our footprint to serve more clients on a larger scale," SES Founder and CEO Mike Monteith, who joins as Leader of McKinsey & Company's Capital Analytics, says in the release. "McKinsey is unparalleled in developing scalable and sustainable transformation strategies, leveraging industry leading insight and expertise in capital excellence.

"By working together, we will amplify our strengths, driving greater impact for clients at every stage of the capital project lifecycle, and delivering end-to-end transformations that create lasting value," he continues.

Nuclear could be a powerful tool to address rising greenhouse-gas emissions. But to get there, the industry needs to raise its game. Photo via Pexels

Houston expert explains what’s needed to bend the curve on nuclear power

guest column

I argued previously that nuclear power can help the world deal with two related challenges: energy security and climate change. I still think that is the case.

McKinsey & Company, where I worked for more than 30 years, also recently turned to the topic. The authors agreed that nuclear can play a significant role in decarbonization, and noted that there were some encouraging trends, even in markets, such as the United States, where new plants are thin on the ground. And then the authors asked a critical question: “Can the industry reverse the trend of exceeding budgets and timelines while scaling up fast enough to rise to the climate challenge?”

That query got me thinking. To me, the case for nuclear is clear and compelling. Given that electricity demand could triple by 2050, the need for low-emission and constant power is acute. Nuclear fits that bill. Other sources either emit much more (coal, gas, oil) or are intermittent (wind, solar). Little new hydro is being built. Nothing else is at anything like scale.

But clearly, nuclear has not carried the day, particularly in Europe, Japan, and the United States. These markets are, at best, wary of nuclear power. They are willing to invest some money in next-generation technologies or maybe to extend an operating license. But they are not doing much about the conditions that make new construction so costly and difficult.

For that to happen, I think we need to go deeper—to change mindsets among two very different sets of players.

Anti-nuclear green activists. As the Rolling Stones wisely noted, “You can’t always get what you want.” To deal with something as complicated and wide-ranging as climate change, there will be trade-offs. But if you want reliable power and lower emissions and if you don’t want thousands of square miles of land coated with wind and solar farms, something has to give.

Consider France. It gets more than two-thirds of its power from nuclear, which is a huge part of the reason it ranks 60th in the world in per capita carbon-dioxide emissions (4.46 tons), a much better performance than global peers like Japan (8.5), Belgium (8.1), Germany (7.9), and Austria (7.3). Those four countries have all dialed back on nuclear. Here is the Austrian energy minister, Leonore Gewessler: “The attempt to declare nuclear energy as sustainable and renewable must be resolutely opposed.”

If the goal is to reduce emissions, though, why should that be the case? Well, one response is that championing nuclear power could reduce investment in renewables. But again, if the goal is to reduce emissions, then why not embrace technologies that do exactly that? Whether nuclear can be considered “renewable” seems to me to be almost a theological question, not a technical one. And certainly not a useful one. The goal should not be X or Y percent of renewables, but how to promote an energy transition that delivers reliable, low-emission power. Somehow that point is lost, or dismissed. Instead, major environmental groups such as the Sierra Club (“unequivocally opposed”), Greenpeace (“say no to new nukes”), the Climate Action Network Europe, the European Environmental Bureau (“We advocate for an exit from nuclear energy”) and so on don’t see a place for nuclear.

The mindset shift needed among these and other green groups is to see nuclear as one component of a diversified energy system that can be part of the climate solution, and then to turn their considerable power and creativity toward convincing the public. I just don’t see how shutting down nuclear plants before their time, and replacing them with higher-emissions sources, as is often the case, helps to reduce emissions.

I am not holding my breath on this, but stranger things have happened. Heck, nuclear has found an unlikely advocate in film-maker Oliver Stone. His new documentary, “Nuclear,” argues that the public “has been trained, from the very beginning, to fear nuclear power. The very thing that we fear is what may save us.”

Nuclear could be a powerful tool to address rising greenhouse-gas emissions. But to get there, the industry needs to raise its game. Stone’s nuclear-could-save-us scenario would be likelier if the industry made a better case for itself. Not in safety or reliability, where its record is remarkably good, but in frustration and economics. The stereotype of huge delays and budget over-runs is no myth. Georgia is the only US state building plants, and they are both running years and billions beyond the initial projections.

Granted, some things are beyond the industry’s control: legal challenges plus complex and shifting regulation add up. Some countries clearly do better than others on this. South Korea, for example, gets a third of its power from nuclear, is building three more plants, and is expanding its export market. It will be interesting to see if it could develop something like a nuclear assembly line that drives down its costs, which are already much lower than in the United States.

Like any other sector, nuclear needs to excel at competitiveness, cost control, and innovation—and it hasn’t. In the United States, the typical template has been to build really big plants, each unique, and each very expensive because of the size. The McKinsey report noted a number of things that the industry itself could do better, such as learning and applying best practices for large-scale projects; establishing standard designs; and using modular construction techniques. US construction productivity has stagnated for decades; the use of digitization and automation could help.

There are reasons to believe that the industry is improving. A cluster of companies is developing smaller, salt-cooled reactors; these are cheaper and safer. In January 2023, the Nuclear Regulatory Commission certified NuScale’s small modular reactor that uses natural water circulation, obviating the need for pumps and thus lowering capital costs. Compared to the 1,000 MW Georgia plants, NuScale’s are about 77MW, but can be added onto. No such plants have been built yet in the United States, though; advanced fission and fusion are even further away. So at the moment, this is all about potential. As one Department of Energy official put it, “It becomes truly real when electrons go on the grid.”

McKinsey concluded: “We believe a nuclear scale-up is achievable. It’s time for the industry to meet the challenge.” I agree,

Nuclear could be a powerful tool to address rising greenhouse-gas emissions. But to get there, the industry needs to raise its game. And it could use a little help from its enemies.


Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally ran on LinkedIn.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Chevron, TotalEnergies back energy storage startup's $15.8M series A

money moves

A California startup that's revolutionizing polymer cathode battery technology has announced its series A round of funding with support from Houston-based energy transition leaders.

LiNova Energy Inc. closed a $15.8 million series A round led by Catalus Capital. Saft, a subsidiary of TotalEnergies, which has its US HQ in Houston, and Houston-based Chevron Technology Ventures, also participated in the round with a coalition of other investors.

LiNova will use the funds with its polymer cathode battery to advance the energy storage landscape, according to the company. The company uses a high-energy polymer battery technology that is designed to allow material replacement of the traditional cathode that is made up of cobalt, nickel, and other materials.

The joint development agreement with Saft will have them collaborate to develop the battery technology for commercialization in Saft's key markets.

“We are proud to collaborate with LiNova in scaling up its technology, leveraging the extensive experience of Saft's research teams, our newest prototype lines, and our industrial expertise in battery cell production," Cedric Duclos, CEO of Saft, says in a news release.

CTV recently announced its $500 million Future Energy Fund III, which aims to lead on emerging mobility, energy decentralization, industrial decarbonization, and the growing circular economy. Chevron has promised to spend $10 billion on lower carbon energy investments and projects by 2028.

Houston innovation leaders secure SBA funding to start equitability-focused energy lab

trying for DEI

A group of Houston's innovation and energy leaders teamed up to establish an initiative supporting equitability in the energy transition.

Impact Hub Houston, a nonprofit incubator and ecosystem builder, partnered with Energy Tech Nexus to establish the Equitable Energy Transition Alliance and Lab to accelerate startup pilots for underserved communities. The initiative announced that it's won the 2024 U.S. Small Business Administration Growth Accelerator Fund Competition, or GAFC, Stage One award.

"We are incredibly honored to be recognized by the SBA alongside our esteemed partners at Energy Tech Nexus," Grace Rodriguez, co-founder and executive director of Impact Hub Houston, says in a news release. "This award validates our shared commitment to building a robust innovation ecosystem in Houston, especially for solutions that advance the Sustainable Development Goals at the critical intersections of industry, innovation, sustainability, and reducing inequality."

The GAFC award, which honors and supports small business research and development, provides $50,000 prize to its winners. The Houston collaboration aligns with the program's theme area of Sustainability and Biotechnology.

“This award offers us a great opportunity to amplify the innovations of Houston’s clean energy and decarbonization pioneers,” adds Juliana Garaizar, founding partner of the Energy Tech Nexus. “By combining Impact Hub Houston’s entrepreneurial resources with Energy Tech Nexus’ deep industry expertise, we can create a truly transformative force for positive change.”

Per the release, Impact Hub Houston and Energy Tech Nexus will use the funding to recruit new partners, strengthen existing alliances, and host impactful events and programs to help sustainable startups access pilots, contracts, and capital to grow.

"SBA’s Growth Accelerator Fund Competition Stage One winners join the SBA’s incredible network of entrepreneurial support organizations contributing to America’s innovative startup ecosystem, ensuring the next generation of science and technology-based innovations scale into thriving businesses," says U.S. SBA Administrator Isabel Casillas Guzman.


This article originally ran on InnovationMap.

Texas-based Tesla gets China's initial approval of self-driving software

global greenlight

Shares of Tesla stock rallied Monday after the electric vehicle maker's CEO, Elon Musk, paid a surprise visit to Beijing over the weekend and reportedly won tentative approval for its driving software.

Musk met with a senior government official in the Chinese capital Sunday, just as the nation’s carmakers are showing off their latest electric vehicle models at the Beijing auto show.

According to The Wall Street Journal, which cited anonymous sources familiar with the matter, Chinese officials told Tesla that Beijing has tentatively approved the automaker's plan to launch its “Full Self-Driving,” or FSD, software feature in the country.

Although it's called FSD, the software still requires human supervision. On Friday the U.S. government’s auto safety agency said it is investigating whether last year’s recall of Tesla’s Autopilot driving system did enough to make sure drivers pay attention to the road. Tesla has reported 20 more crashes involving Autopilot since the recall, according to the National Highway Traffic Safety Administration.

In afternoon trading, shares in Tesla Inc., which is based in Austin, Texas, surged to end Monday up more than 15% — its biggest one-day jump since February 2020. For the year to date, shares are still down 22%.

Tesla has been contending with its stock slide and slowing production. Last week, the company said its first-quarter net income plunged by more than half, but it touted a newer, cheaper car and a fully autonomous robotaxi as catalysts for future growth.

Wedbush analyst Dan Ives called the news about the Chinese approval a “home run” for Tesla and maintained his “Outperform” rating on the stock.

“We note Tesla has stored all data collected by its Chinese fleet in Shanghai since 2021 as required by regulators in Beijing,” Ives wrote in a note to investors. “If Musk is able to obtain approval from Beijing to transfer data collected in China abroad this would be pivotal around the acceleration of training its algorithms for its autonomous technology globally.”