guest column

Houston expert explains what’s needed to bend the curve on nuclear power

Nuclear could be a powerful tool to address rising greenhouse-gas emissions. But to get there, the industry needs to raise its game. Photo via Pexels

I argued previously that nuclear power can help the world deal with two related challenges: energy security and climate change. I still think that is the case.

McKinsey & Company, where I worked for more than 30 years, also recently turned to the topic. The authors agreed that nuclear can play a significant role in decarbonization, and noted that there were some encouraging trends, even in markets, such as the United States, where new plants are thin on the ground. And then the authors asked a critical question: “Can the industry reverse the trend of exceeding budgets and timelines while scaling up fast enough to rise to the climate challenge?”

That query got me thinking. To me, the case for nuclear is clear and compelling. Given that electricity demand could triple by 2050, the need for low-emission and constant power is acute. Nuclear fits that bill. Other sources either emit much more (coal, gas, oil) or are intermittent (wind, solar). Little new hydro is being built. Nothing else is at anything like scale.

But clearly, nuclear has not carried the day, particularly in Europe, Japan, and the United States. These markets are, at best, wary of nuclear power. They are willing to invest some money in next-generation technologies or maybe to extend an operating license. But they are not doing much about the conditions that make new construction so costly and difficult.

For that to happen, I think we need to go deeper—to change mindsets among two very different sets of players.

Anti-nuclear green activists. As the Rolling Stones wisely noted, “You can’t always get what you want.” To deal with something as complicated and wide-ranging as climate change, there will be trade-offs. But if you want reliable power and lower emissions and if you don’t want thousands of square miles of land coated with wind and solar farms, something has to give.

Consider France. It gets more than two-thirds of its power from nuclear, which is a huge part of the reason it ranks 60th in the world in per capita carbon-dioxide emissions (4.46 tons), a much better performance than global peers like Japan (8.5), Belgium (8.1), Germany (7.9), and Austria (7.3). Those four countries have all dialed back on nuclear. Here is the Austrian energy minister, Leonore Gewessler: “The attempt to declare nuclear energy as sustainable and renewable must be resolutely opposed.”

If the goal is to reduce emissions, though, why should that be the case? Well, one response is that championing nuclear power could reduce investment in renewables. But again, if the goal is to reduce emissions, then why not embrace technologies that do exactly that? Whether nuclear can be considered “renewable” seems to me to be almost a theological question, not a technical one. And certainly not a useful one. The goal should not be X or Y percent of renewables, but how to promote an energy transition that delivers reliable, low-emission power. Somehow that point is lost, or dismissed. Instead, major environmental groups such as the Sierra Club (“unequivocally opposed”), Greenpeace (“say no to new nukes”), the Climate Action Network Europe, the European Environmental Bureau (“We advocate for an exit from nuclear energy”) and so on don’t see a place for nuclear.

The mindset shift needed among these and other green groups is to see nuclear as one component of a diversified energy system that can be part of the climate solution, and then to turn their considerable power and creativity toward convincing the public. I just don’t see how shutting down nuclear plants before their time, and replacing them with higher-emissions sources, as is often the case, helps to reduce emissions.

I am not holding my breath on this, but stranger things have happened. Heck, nuclear has found an unlikely advocate in film-maker Oliver Stone. His new documentary, “Nuclear,” argues that the public “has been trained, from the very beginning, to fear nuclear power. The very thing that we fear is what may save us.”

Nuclear could be a powerful tool to address rising greenhouse-gas emissions. But to get there, the industry needs to raise its game. Stone’s nuclear-could-save-us scenario would be likelier if the industry made a better case for itself. Not in safety or reliability, where its record is remarkably good, but in frustration and economics. The stereotype of huge delays and budget over-runs is no myth. Georgia is the only US state building plants, and they are both running years and billions beyond the initial projections.

Granted, some things are beyond the industry’s control: legal challenges plus complex and shifting regulation add up. Some countries clearly do better than others on this. South Korea, for example, gets a third of its power from nuclear, is building three more plants, and is expanding its export market. It will be interesting to see if it could develop something like a nuclear assembly line that drives down its costs, which are already much lower than in the United States.

Like any other sector, nuclear needs to excel at competitiveness, cost control, and innovation—and it hasn’t. In the United States, the typical template has been to build really big plants, each unique, and each very expensive because of the size. The McKinsey report noted a number of things that the industry itself could do better, such as learning and applying best practices for large-scale projects; establishing standard designs; and using modular construction techniques. US construction productivity has stagnated for decades; the use of digitization and automation could help.

There are reasons to believe that the industry is improving. A cluster of companies is developing smaller, salt-cooled reactors; these are cheaper and safer. In January 2023, the Nuclear Regulatory Commission certified NuScale’s small modular reactor that uses natural water circulation, obviating the need for pumps and thus lowering capital costs. Compared to the 1,000 MW Georgia plants, NuScale’s are about 77MW, but can be added onto. No such plants have been built yet in the United States, though; advanced fission and fusion are even further away. So at the moment, this is all about potential. As one Department of Energy official put it, “It becomes truly real when electrons go on the grid.”

McKinsey concluded: “We believe a nuclear scale-up is achievable. It’s time for the industry to meet the challenge.” I agree,

Nuclear could be a powerful tool to address rising greenhouse-gas emissions. But to get there, the industry needs to raise its game. And it could use a little help from its enemies.

------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally ran on LinkedIn.

Trending News

A View From HETI

Ten climatetech startups were named most-promising at this annual Rice Alliance Energy Tech Venture Forum. Photo courtesy Rice Alliance.

Investors at the Rice Alliance Energy Tech Venture Forum have named the 10 most-promising startups among the group of 100 clean tech companies participating in the event.

The 22nd annual event was held yesterday, Sept. 18, at Rice University’s Jones Graduate School of Business and was part of the second Houston Energy and Climate Startup Week.

The most-promising startups will receive $7,000 in in-kind legal services from Baker Botts.

The 10 most-promising companies included:

  • Houston-based Xplorobot, which has developed laser gas imaging technology for the first handheld methane detection device approved by the EPA as an alternative test method
  • Seattle-based Badwater Alchemy, a desalination company that uses nano materials to purify saline water at a fraction of the cost of traditional methods
  • San Francisco-based Ammobia, which is developing a clean ammonia production process
  • Illinois-based Celadyne Technologies, which is building hydrogen for industrial decarbonization with durable and efficient fuel cells and electrolyzers
  • Massachusetts-based MacroCycle Technologies, which converts plastic waste in the form of bottles, food trays and polyester textiles into virgin-grade mPET resin
  • Yorkshire, England-based AtoMe, a global developer of zero-carbon fertiliser products
  • Colorado-based Advanced Thermovoltaic Systems (ATS) Energy, a renewable energy semiconductor manufacturing company
  • North Carolina-based Lukera Energy, which is converting waste methane into high-value fuel
  • Midland, Texas-based AI Driller, a company that uses AI and machine learning to enable remote operations and provide historical drilling data for survey management, anti-collision monitoring and iob reporting
  • New York-based Fast Metals Inc., which has developed a chemical process to extract valuable metals from complex toxic mine tailings that is capable of producing iron, aluminum, scandium, titanium and other rare earth elements using industrial waste and waste CO2 as inputs

Arculus Solutions won the People's Choice Award. The New Jersey-based company retrofits natural gas pipelines for safe hydrogen transportation. It also won Track A: Hydrogen, Fuel Cells, Buildings, Water, & Other Energy Solutions at the Energy Venture Day and Pitch Competition during CERAWeek earlier this year.

The 100 energy technology ventures selected to participate in the forum were named earlier this year. See the full list here.

Trending News