guest column

Houston expert explains what’s needed to bend the curve on nuclear power

Nuclear could be a powerful tool to address rising greenhouse-gas emissions. But to get there, the industry needs to raise its game. Photo via Pexels

I argued previously that nuclear power can help the world deal with two related challenges: energy security and climate change. I still think that is the case.

McKinsey & Company, where I worked for more than 30 years, also recently turned to the topic. The authors agreed that nuclear can play a significant role in decarbonization, and noted that there were some encouraging trends, even in markets, such as the United States, where new plants are thin on the ground. And then the authors asked a critical question: “Can the industry reverse the trend of exceeding budgets and timelines while scaling up fast enough to rise to the climate challenge?”

That query got me thinking. To me, the case for nuclear is clear and compelling. Given that electricity demand could triple by 2050, the need for low-emission and constant power is acute. Nuclear fits that bill. Other sources either emit much more (coal, gas, oil) or are intermittent (wind, solar). Little new hydro is being built. Nothing else is at anything like scale.

But clearly, nuclear has not carried the day, particularly in Europe, Japan, and the United States. These markets are, at best, wary of nuclear power. They are willing to invest some money in next-generation technologies or maybe to extend an operating license. But they are not doing much about the conditions that make new construction so costly and difficult.

For that to happen, I think we need to go deeper—to change mindsets among two very different sets of players.

Anti-nuclear green activists. As the Rolling Stones wisely noted, “You can’t always get what you want.” To deal with something as complicated and wide-ranging as climate change, there will be trade-offs. But if you want reliable power and lower emissions and if you don’t want thousands of square miles of land coated with wind and solar farms, something has to give.

Consider France. It gets more than two-thirds of its power from nuclear, which is a huge part of the reason it ranks 60th in the world in per capita carbon-dioxide emissions (4.46 tons), a much better performance than global peers like Japan (8.5), Belgium (8.1), Germany (7.9), and Austria (7.3). Those four countries have all dialed back on nuclear. Here is the Austrian energy minister, Leonore Gewessler: “The attempt to declare nuclear energy as sustainable and renewable must be resolutely opposed.”

If the goal is to reduce emissions, though, why should that be the case? Well, one response is that championing nuclear power could reduce investment in renewables. But again, if the goal is to reduce emissions, then why not embrace technologies that do exactly that? Whether nuclear can be considered “renewable” seems to me to be almost a theological question, not a technical one. And certainly not a useful one. The goal should not be X or Y percent of renewables, but how to promote an energy transition that delivers reliable, low-emission power. Somehow that point is lost, or dismissed. Instead, major environmental groups such as the Sierra Club (“unequivocally opposed”), Greenpeace (“say no to new nukes”), the Climate Action Network Europe, the European Environmental Bureau (“We advocate for an exit from nuclear energy”) and so on don’t see a place for nuclear.

The mindset shift needed among these and other green groups is to see nuclear as one component of a diversified energy system that can be part of the climate solution, and then to turn their considerable power and creativity toward convincing the public. I just don’t see how shutting down nuclear plants before their time, and replacing them with higher-emissions sources, as is often the case, helps to reduce emissions.

I am not holding my breath on this, but stranger things have happened. Heck, nuclear has found an unlikely advocate in film-maker Oliver Stone. His new documentary, “Nuclear,” argues that the public “has been trained, from the very beginning, to fear nuclear power. The very thing that we fear is what may save us.”

Nuclear could be a powerful tool to address rising greenhouse-gas emissions. But to get there, the industry needs to raise its game. Stone’s nuclear-could-save-us scenario would be likelier if the industry made a better case for itself. Not in safety or reliability, where its record is remarkably good, but in frustration and economics. The stereotype of huge delays and budget over-runs is no myth. Georgia is the only US state building plants, and they are both running years and billions beyond the initial projections.

Granted, some things are beyond the industry’s control: legal challenges plus complex and shifting regulation add up. Some countries clearly do better than others on this. South Korea, for example, gets a third of its power from nuclear, is building three more plants, and is expanding its export market. It will be interesting to see if it could develop something like a nuclear assembly line that drives down its costs, which are already much lower than in the United States.

Like any other sector, nuclear needs to excel at competitiveness, cost control, and innovation—and it hasn’t. In the United States, the typical template has been to build really big plants, each unique, and each very expensive because of the size. The McKinsey report noted a number of things that the industry itself could do better, such as learning and applying best practices for large-scale projects; establishing standard designs; and using modular construction techniques. US construction productivity has stagnated for decades; the use of digitization and automation could help.

There are reasons to believe that the industry is improving. A cluster of companies is developing smaller, salt-cooled reactors; these are cheaper and safer. In January 2023, the Nuclear Regulatory Commission certified NuScale’s small modular reactor that uses natural water circulation, obviating the need for pumps and thus lowering capital costs. Compared to the 1,000 MW Georgia plants, NuScale’s are about 77MW, but can be added onto. No such plants have been built yet in the United States, though; advanced fission and fusion are even further away. So at the moment, this is all about potential. As one Department of Energy official put it, “It becomes truly real when electrons go on the grid.”

McKinsey concluded: “We believe a nuclear scale-up is achievable. It’s time for the industry to meet the challenge.” I agree,

Nuclear could be a powerful tool to address rising greenhouse-gas emissions. But to get there, the industry needs to raise its game. And it could use a little help from its enemies.

------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally ran on LinkedIn.

Trending News

A View From HETI

ExxonMobil Chairman and CEO Darren Woods said the company was weighing whether it would move forward with a proposed $7 billion low-hydrogen plant in Baytown this summer. Photo via exxonmobil.com

As anticipated, Spring-based oil and gas giant ExxonMobil has paused plans to build a low-hydrogen plant in Baytown, Chairman and CEO Darren Woods told Reuters.

“The suspension of the project, which had already experienced delays, reflects a wider slowdown in efforts by traditional oil and gas firms to transition to cleaner energy sources as many of the initiatives struggle to turn a profit,” Reuters reported.

Woods signaled during ExxonMobil’s second-quarter earnings call that the company was weighing whether it would move forward with the proposed $7 billion plant.

The Biden-era Inflation Reduction Act established a 10-year incentive, the 45V tax credit, for production of clean hydrogen. But under President Trump’s One Big Beautiful Bill Act, the period for beginning construction of low-carbon hydrogen projects that qualify for the tax credit has been compressed. The Inflation Reduction Act called for construction to begin by 2033. The Big Beautiful Bill changed the construction start time to early 2028.

“While our project can meet this timeline, we’re concerned about the development of a broader market, which is critical to transition from government incentives,” Woods said during the earnings call.

Woods had said ExxonMobil was figuring out whether a combination of the 45Q tax credit for carbon capture projects and the revised 45V tax credit would enable a broader market for low-carbon hydrogen.

“If we can’t see an eventual path to a market-driven business, we won’t move forward with the [Baytown] project,” Woods told Wall Street analysts.

“We knew that helping to establish a brand-new product and a brand-new market initially driven by government policy would not be easy or advance in a straight line,” he added.

ExxonMobil announced in 2022 that it would build the low-carbon hydrogen plant at its refining and petrochemical complex in Baytown. The company had indicated the plant would start initial production in 2027.

ExxonMobil had said the Baytown plant would produce up to 1 billion cubic feet of hydrogen per day made from natural gas, and capture and store more than 98 percent of the associated carbon dioxide. The plant would have been capable of storing as much as 10 million metric tons of CO2 per year.

Trending News