leading lady

Houston-based female business leader named changemaker amid energy transition

EDP Renewables North America announced its CEO Sandhya Ganapathy has been named to CNBC’s inaugural Changemakers: Women Transforming Business list.

A Houston renewable energy developer CEO has scored a prestigious spot on a list of changemakers.

EDP Renewables North America announced its CEO Sandhya Ganapathy has been named to CNBC’s inaugural Changemakers: Women Transforming Business list. Ganapathy was recognized for ESG and ED&I Initiatives while helping to advance the clean energy transition.

The new list recognizes female leaders at companies and philanthropic organizations that have achieved impactful financial and business milestones.

“Thank you to CNBC for recognizing the leadership and groundbreaking initiatives the women on this list have achieved,” the company said in a statement on LinkedIn. “As our renewable energy market sector continues to progress and expand, we will need everyone in our industry to be a #changemaker to ensure #reliable, #costeffective, #homegrown energy is accessible to all.”

EDPR NA has developed 9.9 GW of renewables projects to date and operates close to 9 GW of renewable energy across North America under Ganapathy’s leadership. EDPR NA has won various ESG and ED&I-related awards including A Word About Wind’s ED&I Award, CohnReznick’s Gamechanger in ESG Award, Ally Energy’s GRIT Awards for both Best Energy Workplace and ESG & Climate Change Champion, Top Workplace in the USA and Top Workplace in Houston Awards, the Global Energy Transition Award for Excellence as a Community Leader. EDPR NA also made the Corporate Knight’s 100 Most Sustainable Corporations in the World, and was also a finalist for S&P Global’s Energy Company of the Year Award for 2023.

Headquartered in Houston with 60 wind farms, 12 solar parks, and eight regional offices across North America, EDP is a top five renewable energy operator in the U.S. EDPR NA has developed more than 9,600 megawatts (MW) and operates more than 8,900 MW of onshore utility-scale renewable energy projects.

The full 2024 CNBC Changemakers list is available at cnbc.com/Changemakers.

Trending News

A View From HETI

Rice's Atin Pramanik and a team in Pulickel Ajayan's lab shared new findings that offer a sustainable alternative to lithium batteries by enhancing sodium and potassium ion storage. Photo by Jeff Fitlow/Courtesy Rice University

A new study by researchers from Rice University’s Department of Materials Science and NanoEngineering, Baylor University and the Indian Institute of Science Education and Research Thiruvananthapuram has introduced a solution that could help develop more affordable and sustainable sodium-ion batteries.

The findings were recently published in the journal Advanced Functional Materials.

The team worked with tiny cone- and disc-shaped carbon materials from oil and gas industry byproducts with a pure graphitic structure. The forms allow for more efficient energy storage with larger sodium and potassium ions, which is a challenge for anodes in battery research. Sodium and potassium are more widely available and cheaper than lithium.

“For years, we’ve known that sodium and potassium are attractive alternatives to lithium,” Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Engineering at Rice, said in a news release. “But the challenge has always been finding carbon-based anode materials that can store these larger ions efficiently.”

Lithium-ion batteries traditionally rely on graphite as an anode material. However, traditional graphite structures cannot efficiently store sodium or potassium energy, since the atoms are too big and interactions become too complex to slide in and out of graphite’s layers. The cone and disc structures “offer curvature and spacing that welcome sodium and potassium ions without the need for chemical doping (the process of intentionally adding small amounts of specific atoms or molecules to change its properties) or other artificial modifications,” according to the study.

“This is one of the first clear demonstrations of sodium-ion intercalation in pure graphitic materials with such stability,” Atin Pramanik, first author of the study and a postdoctoral associate in Ajayan’s lab, said in the release. “It challenges the belief that pure graphite can’t work with sodium.”

In lab tests, the carbon cones and discs stored about 230 milliamp-hours of charge per gram (mAh/g) by using sodium ions. They still held 151 mAh/g even after 2,000 fast charging cycles. They also worked with potassium-ion batteries.

“We believe this discovery opens up a new design space for battery anodes,” Ajayan added in the release. “Instead of changing the chemistry, we’re changing the shape, and that’s proving to be just as interesting.”

Trending News