leading lady

Houston-based female business leader named changemaker amid energy transition

EDP Renewables North America announced its CEO Sandhya Ganapathy has been named to CNBC’s inaugural Changemakers: Women Transforming Business list.

A Houston renewable energy developer CEO has scored a prestigious spot on a list of changemakers.

EDP Renewables North America announced its CEO Sandhya Ganapathy has been named to CNBC’s inaugural Changemakers: Women Transforming Business list. Ganapathy was recognized for ESG and ED&I Initiatives while helping to advance the clean energy transition.

The new list recognizes female leaders at companies and philanthropic organizations that have achieved impactful financial and business milestones.

“Thank you to CNBC for recognizing the leadership and groundbreaking initiatives the women on this list have achieved,” the company said in a statement on LinkedIn. “As our renewable energy market sector continues to progress and expand, we will need everyone in our industry to be a #changemaker to ensure #reliable, #costeffective, #homegrown energy is accessible to all.”

EDPR NA has developed 9.9 GW of renewables projects to date and operates close to 9 GW of renewable energy across North America under Ganapathy’s leadership. EDPR NA has won various ESG and ED&I-related awards including A Word About Wind’s ED&I Award, CohnReznick’s Gamechanger in ESG Award, Ally Energy’s GRIT Awards for both Best Energy Workplace and ESG & Climate Change Champion, Top Workplace in the USA and Top Workplace in Houston Awards, the Global Energy Transition Award for Excellence as a Community Leader. EDPR NA also made the Corporate Knight’s 100 Most Sustainable Corporations in the World, and was also a finalist for S&P Global’s Energy Company of the Year Award for 2023.

Headquartered in Houston with 60 wind farms, 12 solar parks, and eight regional offices across North America, EDP is a top five renewable energy operator in the U.S. EDPR NA has developed more than 9,600 megawatts (MW) and operates more than 8,900 MW of onshore utility-scale renewable energy projects.

The full 2024 CNBC Changemakers list is available at cnbc.com/Changemakers.

Trending News

A View From HETI

Researchers from Rice University say their recent findings could revolutionize power grids, making energy transmission more efficient. Image via Getty Images.

A new study from researchers at Rice University, published in Nature Communications, could lead to future advances in superconductors with the potential to transform energy use.

The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials.

A team led by Rice’s Qimiao Si, the Harry C. and Olga K. Wiess Professor of Physics and Astronomy, used quantum Fisher information (QFI), a concept from quantum metrology, to measure how electron interactions evolve under extreme conditions. The research team also included Rice’s Yuan Fang, Yiming Wang, Mounica Mahankali and Lei Chen along with Haoyu Hu of the Donostia International Physics Center and Silke Paschen of the Vienna University of Technology. Their work showed that the quantum phenomenon of electron entanglement peaks at a quantum critical point, which is the transition between two states of matter.

“Our findings reveal that strange metals exhibit a unique entanglement pattern, which offers a new lens to understand their exotic behavior,” Si said in a news release. “By leveraging quantum information theory, we are uncovering deep quantum correlations that were previously inaccessible.”

The researchers examined a theoretical framework known as the Kondo lattice, which explains how magnetic moments interact with surrounding electrons. At a critical transition point, these interactions intensify to the extent that the quasiparticles—key to understanding electrical behavior—disappear. Using QFI, the team traced this loss of quasiparticles to the growing entanglement of electron spins, which peaks precisely at the quantum critical point.

In terms of future use, the materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

The team also found that quantum information tools can be applied to other “exotic materials” and quantum technologies.

“By integrating quantum information science with condensed matter physics, we are pivoting in a new direction in materials research,” Si said in the release.

Trending News