EDP Renewables North America LLC has announced four new solar projects in Texas, Mississippi and Illinois for major tech customers. Photo via Getty Images

Houston-based EDP Renewables North America LLC announced that it has powered up four new projects across the country for customers Amazon and Microsoft.

The new projects come about a month after EDP Renewables powered up its new California solar park for Houston-based Shell Energy North America and the Eureka, California-based Redwood Coast Energy Authority.

EDP Renewables announced that it also launched the 100-megawatt Ragsdale Solar Park in Madison Country, Mississippi, in Q4 2024. Amazon has contracted for all 100 megawatts from the solar park through a 15-year power agreement.

The Ragsdale project is the company's second utility-scale project in Mississippi after EDP Renewables launched its Pearl River Solar Park last year.

“Ragsdale signifies EDP Renewables’ ongoing commitment to Mississippi, its communities, and local businesses. The opportunity to develop utility-scale solar and contract directly with customers like Amazon, who are also committed to expanding their own presence in Mississippi, has been invaluable," Sandhya Ganapathy, CEO of EDP Renewables North America, said in a statement. "We are proud to aid the state’s commercial and industrial growth with homegrown energy solutions."

Additionally, EDP Renewables has powered three new projects for tech-giant Microsoft, with two in Illinois and one in Texas.

In December EDP Renewables powered a 150-megawatt Cattlemen II Solar Project in Milam County, Texas, about 70 miles northeast of the Austin area. It joins the 240-megawatt Cattlemen I Solar Park, which came online a year prior.

The company also launched the 140-megawatt Wolf Run Solar Project near Jacksonville, Illinois, and the Hickory Solar Project in Jerseyville, Illinois, late last year. The Hickory project was developed in conjunction with D.C.-based Volt Energy Utility.

Microsoft has agreed to purchase 389 megawatts and renewable energy credits from the projects, which brings the portfolio between the two companies up to five projects in total. It also includes the Timber Road IV Wind Farm located in Payne, Ohio.

"The importance of ensuring benefits flowing from renewable energy development directly into communities has never been more important,” Ganapathy added in a statement. “Through these three additional projects, we’re keeping our promise – and indeed the industry’s promise – to contribute to the nation’s growing energy demand and in that process invest in long-lasting economic growth of our communities.”

Houston-based renewable project developer has opened four solar parks in the south recently. Photo via edpr.com

Houston renewables developer powers up projects in southern region of the US

shine bright

Houston-based renewable energy developer EDP Renewables is making big moves in the Southern United States with its latest solar park projects.

EDPR celebrated the inauguration of Pearl River Solar Park in Scott County, Mississippi, that has an installed capacity of 210 megawatt peak, which produces enough power to meet the energy needs of more than 27,000 average Mississippi homes.

The project consists of 400,000 monofacial and bifacial tracking photovoltaic panels that will contribute clean, cost-competitive power to the state’s electric grid. Pearl River will provide more than $50 million in payments to local governments throughout its operating life, benefiting schools, health care facilities, fire departments, and other county services, as well as create hundreds of jobs, according to EDPR.

"We are thrilled to finally see Pearl River begin operations,” Sandhya Ganapathy, CEO of EDPR North America, says in a news release. “Solar power is a win-win in Mississippi, as it accelerates the deployment of clean energy to the grid and contributes to the state’s decarbonization objectives. The project will immediately go to work to provide Mississippi with a readily available clean energy resource.”

A second project is currently under development for Ragsdale Solar Park in Canton, Mississippi. The project is expected to provide over $36 million to local governments and $15 million to landowners over the course of its lifespan once it becomes operational.

Ragsdale is expected to generate 100 MW of energy, which is equivalent to the consumption of 15,000 average Mississippi homes. According to the company, once operational, it will create over 100 construction jobs and will create three permanent jobs.

In May, EDPR opened its Crooked Lake Solar Park near Blytheville in Mississippi County, Arkansas, which is a 175-megawatt project. The company says it will generate enough energy to power the equivalent of 30,000 Arkansas homes each year.

In April, EDPR completed Misenheimer Solar Park in Stanly County, North Carolina. The solar project has an installed capacity of 74 megawatts, which is one of the largest in the state. Misenheimer Solar Park will generate enough energy annually to power the equivalent of more than 12,000 North Carolina homes while providing economic and environmental benefits, according to EDPR.

EDP Renewables North America announced its CEO Sandhya Ganapathy has been named to CNBC’s inaugural Changemakers: Women Transforming Business list.

Houston-based female business leader named changemaker amid energy transition

leading lady

A Houston renewable energy developer CEO has scored a prestigious spot on a list of changemakers.

EDP Renewables North America announced its CEO Sandhya Ganapathy has been named to CNBC’s inaugural Changemakers: Women Transforming Business list. Ganapathy was recognized for ESG and ED&I Initiatives while helping to advance the clean energy transition.

The new list recognizes female leaders at companies and philanthropic organizations that have achieved impactful financial and business milestones.

“Thank you to CNBC for recognizing the leadership and groundbreaking initiatives the women on this list have achieved,” the company said in a statement on LinkedIn. “As our renewable energy market sector continues to progress and expand, we will need everyone in our industry to be a #changemaker to ensure #reliable, #costeffective, #homegrown energy is accessible to all.”

EDPR NA has developed 9.9 GW of renewables projects to date and operates close to 9 GW of renewable energy across North America under Ganapathy’s leadership. EDPR NA has won various ESG and ED&I-related awards including A Word About Wind’s ED&I Award, CohnReznick’s Gamechanger in ESG Award, Ally Energy’s GRIT Awards for both Best Energy Workplace and ESG & Climate Change Champion, Top Workplace in the USA and Top Workplace in Houston Awards, the Global Energy Transition Award for Excellence as a Community Leader. EDPR NA also made the Corporate Knight’s 100 Most Sustainable Corporations in the World, and was also a finalist for S&P Global’s Energy Company of the Year Award for 2023.

Headquartered in Houston with 60 wind farms, 12 solar parks, and eight regional offices across North America, EDP is a top five renewable energy operator in the U.S. EDPR NA has developed more than 9,600 megawatts (MW) and operates more than 8,900 MW of onshore utility-scale renewable energy projects.

The full 2024 CNBC Changemakers list is available at cnbc.com/Changemakers.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston researchers make headway on developing low-cost sodium-ion batteries

energy storage

A new study by researchers from Rice University’s Department of Materials Science and NanoEngineering, Baylor University and the Indian Institute of Science Education and Research Thiruvananthapuram has introduced a solution that could help develop more affordable and sustainable sodium-ion batteries.

The findings were recently published in the journal Advanced Functional Materials.

The team worked with tiny cone- and disc-shaped carbon materials from oil and gas industry byproducts with a pure graphitic structure. The forms allow for more efficient energy storage with larger sodium and potassium ions, which is a challenge for anodes in battery research. Sodium and potassium are more widely available and cheaper than lithium.

“For years, we’ve known that sodium and potassium are attractive alternatives to lithium,” Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Engineering at Rice, said in a news release. “But the challenge has always been finding carbon-based anode materials that can store these larger ions efficiently.”

Lithium-ion batteries traditionally rely on graphite as an anode material. However, traditional graphite structures cannot efficiently store sodium or potassium energy, since the atoms are too big and interactions become too complex to slide in and out of graphite’s layers. The cone and disc structures “offer curvature and spacing that welcome sodium and potassium ions without the need for chemical doping (the process of intentionally adding small amounts of specific atoms or molecules to change its properties) or other artificial modifications,” according to the study.

“This is one of the first clear demonstrations of sodium-ion intercalation in pure graphitic materials with such stability,” Atin Pramanik, first author of the study and a postdoctoral associate in Ajayan’s lab, said in the release. “It challenges the belief that pure graphite can’t work with sodium.”

In lab tests, the carbon cones and discs stored about 230 milliamp-hours of charge per gram (mAh/g) by using sodium ions. They still held 151 mAh/g even after 2,000 fast charging cycles. They also worked with potassium-ion batteries.

“We believe this discovery opens up a new design space for battery anodes,” Ajayan added in the release. “Instead of changing the chemistry, we’re changing the shape, and that’s proving to be just as interesting.”

ExxonMobil lands major partnership for clean hydrogen facility in Baytown

power deal

Exxon Mobil and Japanese import/export company Marubeni Corp. have signed a long-term offtake agreement for 250,000 tonnes of low-carbon ammonia per year from ExxonMobil’s forthcoming facility in Baytown, Texas.

“This is another positive step forward for our landmark project,” Barry Engle, president of ExxonMobil Low Carbon Solutions, said in a news release. “By using American-produced natural gas we can boost global energy supply, support Japan’s decarbonization goals and create jobs at home. Our strong relationship with Marubeni sets the stage for delivering low-carbon ammonia from the U.S. to Japan for years to come."

The companies plan to produce low-carbon hydrogen with approximately 98% of CO2 removed and low-carbon ammonia. Marubeni will supply the ammonia mainly to Kobe Power Plant, a subsidiary of Kobe Steel, and has also agreed to acquire an equity stake in ExxonMobil’s low-carbon hydrogen and ammonia facility, which is expected to be one of the largest of its kind.

The Baytown facility aims to produce up to 1 billion cubic feet daily of “virtually carbon-free” hydrogen. It can also produce more than 1 million tons of low-carbon ammonia per year. A final investment decision is expected in 2025 that will be contingent on government policy and necessary regulatory permits, according to the release.

The Kobe Power Plant aims to co-fire low-carbon ammonia with existing fuel, and reduce CO2 emissions by Japan’s fiscal year of 2030. Marubeni also aims to assist the decarbonization of Japan’s power sector and steel manufacturing industry, chemical industry, transportation industry and various others sectors.

“Marubeni will take this first step together with ExxonMobil in the aim of establishing a global low-carbon ammonia supply chain for Japan through the supply of low-carbon ammonia to the Kobe Power Plant,” Yoshiaki Yokota, senior managing executive officer at Marubeni Corp., added in the news release. “Additionally, we aim to collaborate beyond this supply chain and strive towards the launch of a global market for low-carbon ammonia. We hope to continue to actively cooperate with ExxonMobil, with a view of utilizing this experience and relationship we have built to strategically decarbonize our power projects in Japan and Southeast Asia in the near future.”

Houston expert: The role of U.S. LNG in global energy markets

guest column

The debate over U.S. Liquefied Natural Gas (LNG) exports is too often framed in misleading, oversimplified terms. The reality is clear: LNG is not just a temporary fix or a bridge fuel, it is a fundamental pillar of global energy security and economic stability. U.S. LNG is already reducing coal use in Asia, strengthening Europe’s energy balance, and driving economic growth at home. Turning away from LNG exports now would be a shortsighted mistake, undermining both U.S. economic interests and global energy security.

Ken Medlock, Senior Director of the Baker Institute’s Center for Energy Studies, provides a fact-based assessment of the U.S. LNG exports that cuts through the noise. His analysis, consistent with McKinsey work, confirms that U.S. LNG is essential to balancing global energy markets for the decades ahead. While infrastructure challenges and environmental concerns exist, the benefits far outweigh the drawbacks. If the U.S. fails to embrace its leadership in LNG, we risk giving up our position to competitors, weakening our energy resilience, and damaging national security.

LNG Export Licenses: Options, Not Guarantees

A common but deeply flawed argument against expanding LNG exports is the assumption that granting licenses guarantees unlimited exports. This is simply incorrect. As Medlock puts it, “Licenses are options, not guarantees. Projects do not move forward if they are unable to find commercial footing.”

This is critical: government approvals do not dictate market outcomes. LNG projects must navigate economic viability, infrastructure feasibility, and global demand before becoming operational. This reality should dispel fears that expanded licensing will automatically lead to an uncontrolled surge in exports or domestic price spikes. The market, not government restrictions, should determine which projects succeed.

Canada’s Role in U.S. Gas Markets

The U.S. LNG debate often overlooks an important factor: pipeline imports from Canada. The U.S. and Canadian markets are deeply intertwined, yet critics often ignore this reality. Medlock highlights that “the importance to domestic supply-demand balance of our neighbors to the north and south cannot be overstated.”

Infrastructure Constraints and Price Volatility

One of the most counterproductive policies the U.S. could adopt is restricting LNG infrastructure development. Ironically, such restrictions would not only hinder exports but also drive up domestic energy prices. Medlock’s report explains this paradox: “Constraints that either raise development costs or limit the ability to develop infrastructure tend to make domestic supply less elastic. Ironically, this has the impact of limiting exports and raising domestic prices.”

The takeaway is straightforward: blocking infrastructure development is a self-inflicted wound. It stifles market efficiency, raises costs for American consumers, and weakens U.S. competitiveness in global energy markets. McKinsey research confirms that well-planned infrastructure investments lead to greater price stability and a more resilient energy sector. The U.S. should be accelerating, not hindering, these investments.

Short-Run vs. Long-Run Impacts on Domestic Prices

Critics of LNG exports often confuse short-term price fluctuations with long-term market trends. This is a mistake. Medlock underscores that “analysis that claims overly negative domestic price impacts due to exports tend to miss the distinction between short-run and long-run elasticity.”

Short-term price shifts are inevitable, driven by seasonal demand and supply disruptions. But long-term trends tell a different story: as infrastructure improves and production expands, markets adjust, and price impacts moderate. McKinsey analysis suggests supply elasticity increases as producers respond to price signals. Policy decisions should be grounded in this broader economic reality, not reactionary fears about temporary price movements.

Assessing the Emissions Debate

The argument that restricting U.S. LNG exports will lower global emissions is fundamentally flawed. In fact, the opposite is true. Medlock warns against “engineering scenarios that violate basic economic principles to induce particular impacts.” He emphasizes that evaluating emissions must be done holistically. “Constraining U.S. LNG exports will likely mean Asian countries will continue to turn to coal for power system balance,” a move that would significantly increase global emissions.

McKinsey’s research reinforces that, on a lifecycle basis, U.S. LNG produces fewer emissions than coal. That said, there is room for improvement, and efforts should focus on minimizing methane leakage and optimizing gas production efficiency.

However, the broader point remains: restricting LNG on environmental grounds ignores the global energy trade-offs at play. A rational approach would address emissions concerns while still recognizing the role of LNG in the global energy system.

The DOE’s Commonwealth LNG Authorization

The Department of Energy’s recent conditional approval of the Commonwealth LNG project is a step in the right direction. It signals that economic growth, energy security, and market demand remain key considerations in regulatory decisions. Medlock’s analysis makes it clear that LNG exports will be driven by market forces, and McKinsey’s projections show that global demand for flexible, reliable LNG is only increasing.

The U.S. should not limit itself with restrictive policies when the rest of the world is demanding more LNG. This is an opportunity to strengthen our position as a global energy leader, create jobs, and ensure long-term energy security.

Conclusion

The U.S. LNG debate must move beyond fear-driven narratives and focus on reality. The facts are clear: LNG exports strengthen energy security, drive economic growth, and reduce global emissions by displacing coal.

Instead of restrictive policies that limit LNG’s potential, the U.S. should focus on expanding infrastructure, maintaining market flexibility, and supporting innovation to further reduce emissions. The energy transition will be shaped by market realities, not unrealistic expectations.

The U.S. has an opportunity to lead. But leadership requires embracing economic logic, investing in infrastructure, and ensuring our policies are guided by facts, not political expediency. LNG is a critical part of the global energy landscape, and it’s time to recognize its long-term strategic value.

------------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally appeared on LinkedIn.