M&A move

Katy-based US Silica agrees to go private in $1.85B acquisition by asset management firm

Once the deal closes, U.S. Silica's stock will no longer be listed on the New York Stock Exchange. Photo via ussilica.com

U.S. Silica has agreed to go private in an all-cash acquisition by Apollo Global Management, a New York asset management firm that primarily invests in alternative assets. The deal values the industrial minerals company at about $1.85 billion.

In a Friday announcement, U.S. Silica said that shareholders would receive $15.50 in cash for each share owned as of the deal's closing. Once the deal closes, U.S. Silica's stock will no longer be listed on the New York Stock Exchange.

Founded in the late 1800s, U.S. Silica produces commercial silica used in the oil and gas industry and other industrial applications. It operates 26 mines and processing facilities and two additional exploration stage properties.

The Katy, Texas-based company is still set to operate under the U.S. Silica name and brand, and will continue to be led by its current CEO Bryan Shinn. In a prepared statement, Shinn said that partnering with Apollo will give U.S. Silica “significant resources, deep industry expertise and enhanced flexibility as a private company."

U.S. Silica said that the transaction — which has been unanimously approved by its board of directors — is expected to close in the third quarter, subject to regulatory approval and other customary conditions.

The agreement also includes a 45-day “go-shop” period that allows U.S. Silica to seek out other proposals until June 10.

Shares of U.S. Silica Holdings Inc. climbed nearly 20 percent Friday morning, shortly after the company reported net income of $13.7 million for its first quarter. The commercial silica producer posted revenue of $325.9 million in the period.

Apollo Global Management's stock was up about 0.18 percent.

Trending News

A View From HETI

Rice University scientists' “recharge-to-recycle” reactor has major implications for the electric vehicle sector. Photo courtesy Jorge Vidal/Rice University.

Engineers at Rice University have developed a cleaner, innovative process to turn end-of-life lithium-ion battery waste into new lithium feedstock.

The findings, recently published in the journal Joule, demonstrate how the team’s new “recharge-to-recycle” reactor recharges the battery’s waste cathode materials to coax out lithium ions into water. The team was then able to form high-purity lithium hydroxide, which was clean enough to feed directly back into battery manufacturing.

The study has major implications for the electric vehicle sector, which significantly contributes to the waste stream from end-of-life battery packs. Additionally, lithium tends to be expensive to mine and refine, and current recycling methods are energy- and chemical-intensive.

“Directly producing high-purity lithium hydroxide shortens the path back into new batteries,” Haotian Wang, associate professor of chemical and biomolecular engineering, co-corresponding author of the study and co-founder of Solidec, said in a news release. “That means fewer processing steps, lower waste and a more resilient supply chain.”

Sibani Lisa Biswal, chair of Rice’s Department of Chemical and Biomolecular Engineering and the William M. McCardell Professor in Chemical Engineering, also served as co-corresponding author on the study.

“We asked a basic question: If charging a battery pulls lithium out of a cathode, why not use that same reaction to recycle?” Biswal added in the release. “By pairing that chemistry with a compact electrochemical reactor, we can separate lithium cleanly and produce the exact salt manufacturers want.”

The new process also showed scalability, according to Rice. The engineers scaled the device to 20 square centimeters, then ran a 1,000-hour stability test and processed 57 grams of industrial black mass supplied by industry partner Houston-based TotalEnergies. The results produced lithium hydroxide that was more than 99 percent pure. It also maintained an average lithium recovery rate of nearly 90 percent over the 1,000-hour test, showing its durability. The process also worked across multiple battery chemistries, including lithium iron phosphate, lithium manganese oxide and nickel-manganese-cobalt variants.

Looking ahead, the team plans to scale the process and consider ways it can sustain high efficiency for greater lithium hydroxide concentrations.

“We’ve made lithium extraction cleaner and simpler,” Biswal added in the release. “Now we see the next bottleneck clearly. Tackle concentration, and you unlock even better sustainability.

Trending News