M&A move

Katy-based US Silica agrees to go private in $1.85B acquisition by asset management firm

Once the deal closes, U.S. Silica's stock will no longer be listed on the New York Stock Exchange. Photo via ussilica.com

U.S. Silica has agreed to go private in an all-cash acquisition by Apollo Global Management, a New York asset management firm that primarily invests in alternative assets. The deal values the industrial minerals company at about $1.85 billion.

In a Friday announcement, U.S. Silica said that shareholders would receive $15.50 in cash for each share owned as of the deal's closing. Once the deal closes, U.S. Silica's stock will no longer be listed on the New York Stock Exchange.

Founded in the late 1800s, U.S. Silica produces commercial silica used in the oil and gas industry and other industrial applications. It operates 26 mines and processing facilities and two additional exploration stage properties.

The Katy, Texas-based company is still set to operate under the U.S. Silica name and brand, and will continue to be led by its current CEO Bryan Shinn. In a prepared statement, Shinn said that partnering with Apollo will give U.S. Silica “significant resources, deep industry expertise and enhanced flexibility as a private company."

U.S. Silica said that the transaction — which has been unanimously approved by its board of directors — is expected to close in the third quarter, subject to regulatory approval and other customary conditions.

The agreement also includes a 45-day “go-shop” period that allows U.S. Silica to seek out other proposals until June 10.

Shares of U.S. Silica Holdings Inc. climbed nearly 20 percent Friday morning, shortly after the company reported net income of $13.7 million for its first quarter. The commercial silica producer posted revenue of $325.9 million in the period.

Apollo Global Management's stock was up about 0.18 percent.

Trending News

A View From HETI

A team at the University of Houston is changing the game for sodium-ion batteries. Photo via Getty Images

A research lab at the University of Houston has developed a new type of material for sodium-ion batteries that could make them more efficient and boost their energy performance.

Led by Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, the Canepa Research Laboratory is working on a new material called sodium vanadium phosphate, which improves sodium-ion battery performance by increasing the energy density. Energy density is the amount of energy stored per kilogram, and the new material can do so by more than 15 percent. With a higher energy density of 458 watt-hours per kilogram — compared to the 396 watt-hours per kilogram in older sodium-ion batteries — this material brings sodium technology closer to competing with lithium-ion batteries, according to the researchers.

The Canepa Lab used theoretical expertise and computational methods to discover new materials and molecules to help advance clean energy technologies. The team at UH worked with the research groups headed by French researchers Christian Masquelier and Laurence Croguennec from the Laboratoire de Reáctivité et de Chimie des Solides, which is a CNRS laboratory part of the Université de Picardie Jules Verne, in Amiens France, and the Institut de Chimie de la Matière Condensée de Bordeaux, Université de Bordeaux, Bordeaux, France for the experimental work on the project.

The researchers then created a battery prototype using the new materia sodium vanadium phosphate, which demonstrated energy storage improvements. The material is part of a group called “Na superionic conductors” or NaSICONs, which is made to let sodium ions move in and out of the battery during charging and discharging.

“The continuous voltage change is a key feature,” Canepa says in a news release. “It means the battery can perform more efficiently without compromising the electrode stability. That’s a game-changer for sodium-ion technology.”

The synthesis method used to create sodium vanadium phosphate may be applied to other materials with similar chemistries, which could create new opportunities for advanced energy storage. A paper of this work was published in the journal Nature Materials.

"Our goal is to find clean, sustainable solutions for energy storage," Canepa adds. "This material shows that sodium-ion batteries can meet the high-energy demands of modern technology while being cost-effective and environmentally friendly."

Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, is leading a research project that can change the effectiveness of sodium-ion batteries. Photo courtesy of UH

Trending News