For the first time, Texas's ERCOT grid will be connected to other states' grids thanks to funding from the Department of Energy. Photo via Getty Images

$360M DOE grant to fund project that will connect ERCOT to US power grid

powering on

Thanks to recently announced funding, the power grid for the territory served by the Electric Reliability Council of Texas (ERCOT) will be connected to grids in other states.

Officials hope building a 320-mile transmission line that connects the ERCOT electric grid to electric grids in the Southeast will prevent power outages like the massive blackout that occurred in 2022 when a winter storm blasted Texas.

San Francisco-based Pattern Energy says its Southern Spirit project will cost more than $2.6 billion. Full-scale construction is supposed to get underway in 2028, and the project is set to go online in 2031.

The U.S. Department of Energy recently approved up to $360 million for the transmission project. The transmission line will stretch from Texas’ border with Louisiana to Mississippi. It’ll supply about 3,000 megawatts of electricity in either direction. That’s enough power for about 750,000 residential customers during ERCOT’s peak hours.

ERCOT’s more than 54,100 miles of transmission lines supply power to about 90 percent of Texans.

“The U.S. transmission network is the backbone of our nation’s electricity system. Though our grid has served U.S. energy needs for more than a century, our country’s needs are changing,” David Turk, under secretary at the Department of Energy, says in a news release.

“DOE’s approach to deploying near-term solutions and developing long-term planning tools will ensure our electric grid is more interconnected and resilient than ever before,” Turk adds, “while also supporting greater electricity demand.”

The other three projects that recently received funding from the DOE include:

  • Aroostook Renewable Project, which will construct a new substation in Haynesville, Maine, and a 111-mile transmission line connecting to a substation in Pittsfield, Maine.
  • Cimarron Link, a 400-mile HVDC transmission line from Texas County, Oklahoma to Tulsa, Oklahoma
  • Southline, which will construct a 108-mile transmission line between Hidalgo County, New Mexico, and Las Cruces, New Mexico. The DOE previously supported a 175-mile line from Hidalgo County, New Mexico, to Pima County, Arizona, in Southline Phase 1 on the first round of the Transmission Facilitation Program.

This month's funding completes the $2.5 billion in awards from the Transmission Facilitation Program which is administered through the Building a Better Grid Initiative that launched in January 2022. Its mission has been to develop nationally significant transmission lines, increase resilience by connecting regions of the country and improve access to clean energy sources, according to the DOE.

Earlier this year, ERCOT, which manages 90 percent of Texas’ power supply, forecasted a major spike in demand for electricity over the next five to seven years

The 1-gigawatt site will be constructed at a cost of approximately $8 billion. Photo courtesy ECL

California co. announces fully sustainable, hydrogen-powered data center in Houston

moving in

The Houston area will soon be home to what's being lauded as the first fully sustainable 1-gigawatt data center on a 600-acres site east of Houston.

Data center-as-a-service company ECL, headquartered in Mountain View, California, announced its plans to build the ECL TerraSite-TX1. Hardware and cloud service company Lambda will serve as its first tenant. Lambda and other AI leaders will get access to necessary space and power for the next wave zero emission innovations.

Phase 1 of TerraSite-TX1 will be complete by summer of 2025 with a cost of approximately $450 million. The 50 megawatt of data center capacity will be utilized by data center cloud and AI cloud operators. The 1-gigawatt site will be constructed at a cost of approximately $8 billion. The funding will come from ECL and financial partners.

ECL Terrasite-TX1 comes at a needed time for Texas with The Electric Reliability Council of Texas stating on June 12 that the state’s power grid needs will grow approximately double by 2030. This is due in part to the growth of data centers and AI. The ECL Terrasite-TX1 is built to help eliminate the stress on the state’s power grid and help facilitate “state-level economic development and growth of the AI industry,” according to a news release.

ECL houston data centerThe project will span over 600 acres east of Houston. Rendering courtesy ECL

ECL data centers are built to be modular, which allows for expansion in 1-megawatt increments. They are “ built to suit” and delivered in less than 12 months, which is shorter than the industry standard of 36 to 48.

“While others talk about delivering off-grid, hydrogen-powered data centers in five, ten, or 20 years, only ECL is giving the AI industry the space, power, and peace of mind they and their customers need, now,” Yuval Bachar, co-founder and CEO of ECL, says in a news release. “The level of innovation that we have introduced to the market is unprecedented and will serve not only us and our customers but the entire data center industry for decades to come.”

ECL’s ECL-MV1 is the world’s first off-grid, hydrogen-powered modular data center that operates 24/7 with zero emissions, less noise, and a negative water footprint that replenishes water to the community. ECL-MV1 offers a 10x increase in “energy efficiency with a power usage effectiveness of 1.05 and a 7-times improvement in data density per rack, which is ideal for AI high-density demand” according to the release.

“The data center technology committed to by ECL is truly transformative in the industry,” Lambda's Vice President for Data Center Infrastructure Ken Patchett adds. “We believe ECL’s technology could unlock a powerful and eco-conscious foundation for AI advancement. This new infrastructure could give researchers and developers essential computational resources while drastically reducing the environmental impact of AI operations.”

Quidnet Energy has entered into a strategic partnership with Hunt Energy Network, and the two Texas companies will work on a build-transfer program for 300 MW of storage projects in Texas. Photo via quidnetenergy.com

Houston energy storage company forms $10M partnership to enhance storage in ERCOT region

teaming up

A Houston-based company that's developing long-duration energy storage solutions announced a $10 million investment and partnership with a Texas corporation.

Quidnet Energy has entered into a strategic partnership with Hunt Energy Network, an affiliate of Dallas-based Hunt Energy that develops and operates distributed energy resources. The two Texas companies will work on a build-transfer program for 300 MW of storage projects that uses Quidnet's Geomechanical Energy Storage technology in the Electric Reliability Council of Texas (ERCOT) grid operating region.

“Hunt Energy Network brings an extensive and proven track record across diverse energy businesses, making them an ideal partner to address the need for large-scale, long-duration energy storage in Texas,” Joe Zhou, CEO of Quidnet Energy, says in a news release. “We’re thrilled to have them as an investor, partner, and board member, and we look forward to jointly advancing the deployment of energy storage solutions, particularly in regions like ERCOT where the need is most pressing.”

Todd Benson, the chief innovation officer of Hunt Energy, will join Quidnet's board of directors as a part of the partnership.

“Quidnet Energy's GES technology presents a unique opportunity to revolutionize energy storage, and we’re excited to invest in a solution that purposefully transforms existing resources to expand access to long-duration storage,” adds Pat Wood, III, CEO of HEN. “ERCOT's growing supply of renewable energy makes this region ideal for the deployment of our technology, and we’re pleased to work with another Texas innovator to build a more resilient grid for all ERCOT customers.”

Quidnet’s technology, which can provide over 10 hours of storage, uses drilling and hydropower machinery to store renewable energy. Essentially, the company, founded in 2013, is using water storage to power carbon-free electric grid approach to energy.

One year ago, Quidnet secured $10 million from the U.S. Department of Energy Advanced Research Projects Agency-Energy, or ARPA-E. Just a few months after that, the company received an additional $2 million from the DOE for its project, entitled "Energy Storage Systems for Overpressure Environments," which is taking place in East Texas.

In Texas last month, coal use dropped and solar energy soared, according to a new report. Photo via Pexels

Report: Solar tops coal in Texas for energy generation for the first time

by the numbers

For the first time in Texas, according to a recent report, solar energy generation surpassed the output by coal.

The report — from the Institute For Energy Economics and Financial Analysis — sourced the Energy Information Administration’s hourly grid monitor for March 2024. This shift in a predominantly oil and gas dominated history of Texas energy output, was due to solar power’s 3.26 million megawatt-hours to Electric Reliability Council of Texas (ERCOT) grid, compared to coal’s 2.96 million MWh.

In addition, coal’s market share fell below 10 percent to 9 percent for the first time ever, to just over 9 percent. The increase in solar energy pushed solar’s share of ERCOT generation to more than 10 percent for the month, which was also a first.

Due to its sheer size, Texas is the No.1 state for solar capacity. According to the report from SmartAsset, the Lone Star State has the most clean energy capacity at 56,405 megawatts, but continues to trail states with similar geographic characteristics in overall clean energy prevalence.

Texas only 38 percent of the state’s electricity capacity comes from clean electricity, and it has the second-largest solar capacity, which means Texas has the most means, space, and potential to accommodate cleaner electricity. Texas as a whole, ranked No. 22 on the list for states with the most clean energy in the SmartAsset report.

In Texas, generation in March 2024 was 1.17 million MWh more year-over-year, which is a 56 percent increase. ERCOT data shows that the system currently has 22,710 megawatts (MW) of operational solar capacity according to IEEFA, and is expected to expand by almost one-third by the end of 2024 with an additional 7,168 MW of capacity added. The number just considers Texas solar projects that have set aside the financing required to get onto the ERCOT grid and that have a signed interconnection agreement.

Texas burned 50.7 million tons of coal for electricity, which was 13 percent of the U.S. total in 2023 according to the EIA grid monitor. Coal's annual share of ERCOT demand ranged from 36 percent to 40 percent from 2003 through 2014. The last year percent. In 2020, coal was under 20 percent in 2020; and was less than 15 percent in 2023 supplying just 13.9 percent of the system’s total demand.

The IEEFA notes coal’s low March production is important because in recent years it has been the moderate temperatures of April and May and steady winds that have affected the usage and the market share.

The GridStor project will boost the Electric Reliability Council of Texas grid. It’s GridStor’s first acquisition in ERCOT territory. Photo via gridstor.com

Oregon energy storage company plans 450-megawatt facility in Galveston County

coming soon

An Oregon startup has purchased a 450-megawatt battery energy storage project in Galveston County.

GridStor, a Portland, Oregon-based developer and operator of battery energy storage systems, bought the project from Moab, Utah-based Balanced Rock Power. The Utah company develops utility-scale solar and energy storage projects.

Financial terms of the deal weren’t disclosed.

GridStor, founded in 2022, is backed by Goldman Sachs Asset Management. The Portland Business Journal reported last November that Goldman Sachs had raised a $410 million fund to fuel its energy storage strategy.

Construction on the Evelyn Battery Energy Storage project is scheduled to get underway this summer, with the system projected to go online in the spring of 2025.

“Battery storage is a scalable and near-term solution to powering historic load growth in Texas,” Chris Taylor, CEO of GridStor, says in a news release. “Every day, batteries are consistently providing energy to stabilize the power system and meet hours of greatest demand in the state.”

The GridStor project will boost the Electric Reliability Council of Texas (ERCOT) grid. It’s GridStor’s first acquisition in ERCOT territory.

The project will be built near the Hidden Lakes substation, which is owned by Texas-New Mexico Power, which now just serves Texas. This proximity will enable batteries to quickly begin grid-connected operations.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

6 major acquisitions that fueled the Houston energy sector in 2025

2025 In Review

Editor's note: As 2025 comes to a close, we're revisiting the biggest headlines and major milestones of the energy transition sector this year. Here are six major acquisitions that fueled the Houston energy industry in 2025:

Houston-based Calpine Corp. to be acquired in clean energy megadeal

Houston's Calpine Corp. will be acquired by Baltimore-based nuclear power company Constellation Energy Corp. Photo via DOE

In January 2025, Baltimore-based nuclear power company Constellation Energy Corp. and Houston-based Calpine Corp. entered into an agreement where Constellation would acquire Calpine in a cash and stock transaction with an overall net purchase price of $26.6 billion. The deal received final regulatory clearance this month.

Investment giant to acquire TXNM Energy for $11.5 billion

Blackstone Infrastructure, an affiliate of Blackstone Inc., will acquire a major Texas electricity provider. Photo via Shutterstock

In May 2025, Blackstone Infrastructure, an investment giant with $600 million in assets under management, agreed to buy publicly traded TXNM Energy in a debt-and-stock deal valued at $11.5 billion. The deal recently cleared a major regulatory hurdle, but still must be approved by the Public Utility Commission of Texas.

Houston's Rhythm Energy expands nationally with clean power acquisition

PJ Popovic, founder and CEO of Houston-based Rhythm Energy, which has acquired Inspire Clean Energy. Photo courtesy of Rhythm

Houston-based Rhythm Energy Inc. acquired Inspire Clean Energy in June 2025 for an undisclosed amount. The deal allowed Rhythm to immediately scale outside of Texas and into the Northeast, Midwest and mid-Atlantic regions.

Houston American Energy closes acquisition of New York low-carbon fuel co.

Houston American Energy Corp. has acquired Abundia Global Impact Group, which converts plastic and certified biomass waste into high-quality renewable fuels. Photo via Getty Images.

Renewable energy company Houston American Energy Corp. (NYSE: HUSA) acquired Abundia Global Impact Group in July 2025. The acquisition created a combined company focused on converting waste plastics into high-value, drop-in, low-carbon fuels and chemical products.

Chevron gets green light on $53 billion Hess acquisition

With the deal, Chevron gets access to one of the biggest oil finds of the decade. Photo via Chevron

In July 2025, Houston-based Chevron scored a critical ruling in Paris that provided the go-ahead for a $53 billion acquisition of Hess and access to one of the biggest oil finds of the decade. Chevron completed its acquisition of Hess shortly after the ruling from the International Chamber of Commerce in Paris.

Investors close partial acquisition of Phillips 66 subsidiary with growing EV network

Two investment firms have scooped up the majority stake in JET, a subsidiary of Phillips 66 with a rapidly growing EV charging network. Photo via Jet.de Facebook.

In December 2025, Energy Equation Partners, a London-based investment firm focused on clean energy companies, and New York-based Stonepeak completed the acquisition of a 65 percent interest in JET Tankstellen Deutschland GmbH, a subsidiary of Houston oil and gas giant Phillips 66.

Houston researchers develop energy-efficient film for AI chips

AI research

A team of researchers at the University of Houston has developed an innovative thin-film material that they believe will make AI devices faster and more energy efficient.

AI data centers consume massive amounts of electricity and use large cooling systems to operate, adding a strain on overall energy consumption.

“AI has made our energy needs explode,” Alamgir Karim, Dow Chair and Welch Foundation Professor at the William A. Brookshire Department of Chemical and Biomolecular Engineering at UH, explained in a news release. “Many AI data centers employ vast cooling systems that consume large amounts of electricity to keep the thousands of servers with integrated circuit chips running optimally at low temperatures to maintain high data processing speed, have shorter response time and extend chip lifetime.”

In a report recently published in ACS Nano, Karim and a team of researchers introduced a specialized two-dimensional thin film dielectric, or electric insulator. The film, which does not store electricity, could be used to replace traditional, heat-generating components in integrated circuit chips, which are essential hardware powering AI.

The thinner film material aims to reduce the significant energy cost and heat produced by the high-performance computing necessary for AI.

Karim and his former doctoral student, Maninderjeet Singh, used Nobel prize-winning organic framework materials to develop the film. Singh, now a postdoctoral researcher at Columbia University, developed the materials during his doctoral training at UH, along with Devin Shaffer, a UH professor of civil engineering, and doctoral student Erin Schroeder.

Their study shows that dielectrics with high permittivity (high-k) store more electrical energy and dissipate more energy as heat than those with low-k materials. Karim focused on low-k materials made from light elements, like carbon, that would allow chips to run cooler and faster.

The team then created new materials with carbon and other light elements, forming covalently bonded sheetlike films with highly porous crystalline structures using a process known as synthetic interfacial polymerization. Then they studied their electronic properties and applications in devices.

According to the report, the film was suitable for high-voltage, high-power devices while maintaining thermal stability at elevated operating temperatures.

“These next-generation materials are expected to boost the performance of AI and conventional electronics devices significantly,” Singh added in the release.

---

This article originally appeared on our sister site, InnovationMap.

Energy expert: What 2025 revealed about the evolution of Texas power

guest column

2025 marked a pivotal year for Texas’ energy ecosystem. Rising demand, accelerating renewable integration, tightening reserve margins and growing industrial load reshaped the way policymakers, utilities and the broader market think about reliability.

This wasn’t just another year of operational challenges; it was a clear signal that the state is entering an era where growth and innovation must move together in unison if Texas is going to keep pace.

What happened in 2025 is already influencing the decisions utilities, regulators and large energy consumers will make in 2026 and beyond. If Texas is going to remain the nation’s proving ground for large-scale energy innovation, this year made one thing clear: we need every tool working together and working smarter.

What changed: Grid, policy & the growth of renewables

This year, ERCOT recorded one of the steepest demand increases in its history. From January through September 2025, electricity consumption reached 372 terawatt-hours (TWh), a 5 percent increase over the previous year and a 23 percent jump since 2021. That growth officially positions ERCOT as the fastest-expanding large grid in the country.

To meet this rising load, Texas leaned heavily on clean energy. Solar, wind and battery storage served approximately 36 percent of ERCOT’s electricity needs over the first nine months of the year, a milestone that showcased how quickly Texas has diversified its generation mix. Utility-scale solar surged to 45 TWh, up 50 percent year-over-year, while wind generation reached 87 TWh, a 36 percent increase since 2021.

Battery storage also proved its value. What was once niche is now essential: storage helped shift mid-day excess solar to evening peaks, especially during a historic week in early spring when Texas hit new highs for simultaneous wind, solar and battery output.

Still, natural gas remained the backbone of reliability. Dispatchable thermal resources supplied more than 50 percent of ERCOT’s power 92 percent of the time in Q3 2025. That dual structure of fast-growing renewables backed by firm gas generation is now the defining characteristic of Texas’s energy identity.

But growth cuts both ways. Intermittent generation is up, yet demand is rising faster. Storage is scaling, but not quite at the rate required to fill the evening reliability gap. And while new clean-energy projects are coming online rapidly, the reality of rising population, data center growth, electrification and heavy industrial expansion continues to outpace the additions.

A recent forecast from the Texas Legislative Study Group projects demand could climb another 14 percent by mid-2026, tightening reserve margins unless meaningful additions in capacity, or smarter systemwide usage, arrive soon.

What 2025 meant for the energy ecosystem

The challenges of 2025 pushed Texas to rethink reliability as a shared responsibility between grid operators, generation companies, large load customers, policymakers and consumers. The year underscored several realities:

1. The grid is becoming increasingly weather-dependent. Solar thrives in summer; wind dominates in spring and winter. But extreme heat waves and cold snaps also push demand to unprecedented levels. Reliability now hinges on planning for volatility, not just averages.

2. Infrastructure is straining under rapid load growth. The grid handled multiple stress events in 2025, but it required decisive coordination and emerging technologies, such as storage methods, to do so.

3. Innovation is no longer optional. Advanced forecasting, grid-scale batteries, demand flexibility tools, and hybrid renewable-gas portfolios are now essential components of grid stability.

4. Data centers and industrial electrification are changing the game. Large flexible loads present both a challenge and an opportunity. With proper coordination, they can help stabilize the grid. Without it, they can exacerbate conditions of scarcity.

Texas can meet these challenges, but only with intentional leadership and strong public-private collaboration.

The system-level wins of 2025

Despite volatility, 2025 showcased meaningful progress:

Renewables proved their reliability role. Hitting 36 percent of ERCOT’s generation mix for three consecutive quarters demonstrates that wind, solar and batteries are no longer supplemental — they’re foundational.

Storage emerged as a real asset for reliability. Battery deployments doubled their discharge records in early 2025, showing the potential of short-duration storage during peak periods.

The dual model works when balanced wisely. Natural gas continues to provide firm reliability during low-renewable hours. When paired with renewable growth, Texas gains resilience without sacrificing affordability.

Energy literacy increased across the ecosystem. Communities, utilities and even industrial facilities are paying closer attention to how loads, pricing signals, weather and grid conditions interact—a necessary cultural shift in a fast-changing market.

Where Texas goes in 2026

Texas heads into 2026 with several unmistakable trends shaping the road ahead. Rate adjustments will continue as utilities like CenterPoint request cost recovery to strengthen infrastructure, modernize outdated equipment and add the capacity needed to handle record-breaking growth in load.

At the same time, weather-driven demand is expected to stay unpredictable. While summer peaks will almost certainly set new records, winter is quickly becoming the bigger wild card, especially as natural gas prices and heating demand increasingly drive both reliability planning and consumer stress.

Alongside these pressures, distributed energy is set for real expansion. Rooftop solar, community battery systems and hybrid generation-storage setups are no longer niche upgrades; they’re quickly becoming meaningful grid assets that help support reliability at scale.

And underlying all of this is a cultural shift toward energy literacy. The utilities, regulators, businesses, and institutions that understand load flexibility, pricing signals and efficiency strategies will be the ones best positioned to manage costs and strengthen the grid. In a market that’s evolving this fast, knowing how we use energy matters just as much as knowing how much.

The big picture: 2025 as a blueprint for a resilient future

If 2025 showed us anything, it’s that Texas can scale innovation at a pace few states can match. We saw record renewable output, historic storage milestones and strong thermal performance during strain events. The Texas grid endured significant stress but maintained operational integrity.

But it also showed that reliability isn’t a static achievement; it’s a moving target. As population growth, AI and industrial electrification and weather extremes intensify, Texas must evolve from a reactive posture to a proactive one.

The encouraging part is that Texas has the tools, the talent and the market structure to build one of the most resilient and future-ready power ecosystems in the world. The test ahead isn’t whether we can generate enough power; it’s whether we can coordinate systems, technologies and market behavior fast enough to meet the moment.

And in 2026, that coordination is precisely where the opportunity lies.

———

Sam Luna is director at BKV Energy, where he oversees brand and go-to-market strategy, customer experience, marketing execution, and more.