CarbonQuest, a company with a compact carbon capture technology, announced it received series A funding from Houston-based Riverbend Energy Group. Photo via CarbonQuest

Houston investors are betting on a New York-based carbon capture startup's technology.

CarbonQuest announced it received series A funding from Houston-based Riverbend Energy Group. The terms of the deal were not disclosed. Founded in 2019, the company created its Distributed Carbon Capture technology that captures CO2 from buildings and onsite power generation systems, then liquifies and transports it to local businesses that need carbon for their production processes.

“We are one of the few carbon capture companies with commercial products on the market today, and this investment will enable us to continue bringing distributed carbon capture to a wider swath of the market,” Shane Johnson, president and CEO of CarbonQuest, says in a news release. “We are also excited to attract new talent and expand our North American operations.”

The company's compact, modular carbon capture solution has already been deployed in several New York City buildings and reports that it is focused on natural gas emissions from distributed onsite power generation in 2024. The fresh funding will help CarbonQuest lower its cost for customers and address new market segments, including biogenic sources of CO2, utility infrastructure, and more, per the release.

Additionally, the company plans to advance development of its Carbon Management Software, a platform that provides real-time data and analytics for users. Riverbend's Joe Passanante and Eric Danziger will join CarbonQuest’s board of directors as a part of the deal.

“We are thrilled to partner with CarbonQuest, a company at the forefront of distributed carbon capture technology,” Passanante, managing director at Riverbend, says in the release. “This investment reflects our commitment to advancing solutions that play a critical role in decarbonization.

"CarbonQuest’s innovative approach not only addresses that need, but also offers scalable, economically viable solutions that can be deployed across a wide range of markets," he continues. "We are excited to collaborate with CarbonQuest’s experienced and talented team and believe this partnership will be a game changer in multiple markets, helping to unlock the full potential of distributed carbon capture and significantly contribute to global climate goals.”

Carbon Clean says its tentative partnership with Merrill, Wisconsin-based AGRA Industries should speed up adoption of Carbon Clean’s CaptureX technology in the biofuel industry. Photo via CarbonClean.com

Houston co. enters new carbon capture collaboration focused on biofuels industry

cleaning up

Carbon Clean, a carbon capture company whose North American headquarters is in Houston, has forged a deal with a contractor to build modular carbon capture containers for the agricultural sector.

The company, based in the United Kingdom, says its tentative partnership with Merrill, Wisconsin-based AGRA Industries should speed up adoption of Carbon Clean’s CaptureX technology in the biofuel industry.

Carbon Clean’s technology has been installed at 49 sites around the world. Eighty percent of the sites have prefabricated modular carbon-capture containers, reducing construction and installation time.

The partnership will enable customers to capture CO2 released during the biofuel fermentation stage, enabling the production of fuels with lower carbon-intensity ratings. This will improve the ability of biofuel producers to claim federal tax credits, Carbon Clean says.

“Carbon Clean’s collaboration with AGRA Industries is a win-win for biofuel producers. Customers will benefit from the expertise of a leading agricultural engineering specialist and our modularized, innovative carbon capture technology that is cost-effective and simple to install,” Aniruddha Sharma, chair and CEO of Carbon Clean, says in a news release.

Carbon Clean’s customers include companies in the cement, steel, refinery, and energy-to-waste sectors.

Among the investors in Carbon Clean, founded in 2019, are Chevron, Samsung Ventures, Saudi Aramco Energy Ventures, and WAVE Equity Partners. To date, the company has raised $260 million in funding, according to data platform Tracxn.

The pilot project is a cornerstone of an extended agreement between ExxonMobil Technology and Engineering and Danbury, Connecticut-based clean energy company FuelCell Energy. Photo via exxonmobil.be

ExxonMobil extends European fuel cell pilot project

next step

The Esso fuel business of Spring-based ExxonMobil is forging ahead with a pilot project at its Dutch refinery in Rotterdam to test technology aimed at reducing carbon emissions and simultaneously generating electricity and hydrogen.

The pilot project is a cornerstone of an extended agreement between ExxonMobil Technology and Engineering and Danbury, Connecticut-based clean energy company FuelCell Energy. The deal is now set to expire at the end of 2026.

ExxonMobil and FuelCell announced the pilot project in 2023.

“The unique advantage of this technology is that it not only captures CO2 but also produces low-carbon power, heat, and hydrogen as co-products,” Geoff Richardson, senior vice president of ExxonMobil Low Carbon Solutions, said last year.

The Rotterdam facility, which opened in 1960, will be the first location in the world to test the technology. The technology eventually could be rolled out at additional ExxonMobil sites.

The European Union is among the funders of the pilot project. FuelCell is making carbonate fuel cells for the project at its manufacturing plant in Torrington, Connecticut.

The extended agreement enables FuelCell to incorporate elements of the jointly developed technology into carbon capture products currently being marketed to customers. ExxonMobil and FuelCell are working on formalizing an arrangement for selling the new technology.

“The technology, which captures carbon while simultaneously generating electricity and hydrogen, could improve the economics of carbon capture and could potentially lower the barrier to broader adoption of carbon capture in the marketplace,” according to a FuelCell news release.

FuelCell says its 10-year partnership with ExxonMobil has focused on developing technology that reduces carbon emissions from emission-intensive sectors while generating electricity and hydrogen in the process — “something that no other fuel cell technology or conventional absorption systems can do.”

Navigating the energy transition is a relay race, and the baton is in Houston, says this energy executive. Photo courtesy of SCS

O&G exec: Houston is where the future of energy is taking shape

Q&A

Earlier this month, a West Texas-based oilfield equipment provider announced that it was opening an office in the Ion Houston. It's all a part of the company's energy transition plan.

SCS Technologies, based in Big Spring, Texas, has a new strategy and innovation-focused office in the Ion, the company announced last week. The company, which provides CO2 capture measurement and methane vapor recovery equipment for the energy, industrial, and environmental sectors, also announced René Vandersalm as the new COO.

These are just the latest moves for the company as the world moves away from hydrocarbons and toward a greener future, CEO Cody Johnson tells EnergyCapital, explaining that he recognizes Houston has a role in the energy transition.

"This is a relay race – a race that has already started," he says. "Houston is the place where the baton will be handed off – it’s the place where the race is occurring. SCS Technologies is determined to be part of this solution dreamed of and planned in Houston and then executed in the Permian Basin, where we call home."

In an interview with EnergyCapital, Johnson weighs in on the new office and the future of his company.

EnergyCapital: How has SCS’s business evolved amid the energy transition?

Cody Johnson: SCS Technologies was founded to design and fabricate customized Lease Automated Custody Transfer units in the Permian Basin. These LACT units were used primarily to measure the quality and quantity of crude oil at all points of custody transfer. Essentially, SCS Technologies produced the premier "crude cash registers" for the Permian Basin.

As the oil and gas industry has adapted into the energy transition industry, our customers and the communities we operate in have a growing need for SCS Technologies to use our design and fabrication of measurement skids to measure the quality and quantity of CO2 or to design and fabricate methane — and other vent gases — Vapor Recovery Units. SCS Technologies’ design and fabrication expertise in measurement skids, pump skids, and compression skids, coupled with our Permian Basin based training and fabrication campus, ideally positioned us to answer the call to fill the expertise and capacity gap.

EC: How are you preparing for the future of energy?

CJ: Society has been powered for the past 100 years or so by the management of hydrocarbon molecules. The essential tools for that have been and continue to be oil rigs, pipelines, and refineries in large part. This has given society many benefits but at a price to the environment that isn’t sustainable. Over the next 50 years, society will complete a transition away from managing hydrocarbon molecules and towards managing electrons. Those electrons are created by wind, solar, geothermal, or nuclear processes and travel down copper wires. Managing this transition that is already occurring and working together to do it in the near-term future of energy.

As we execute this transition over the next several decades from managing molecules to managing electrons to provide energy, molecule management companies must find ways to reach net zero emissions in their management practices. This means primarily capturing and managing methane vapors and capturing and sequestering CO2. This is starting in 2023 in a meaningful way and needs to continue past 2030 and probably past 2050 to have any chance to meet the globally shared social goal to achieve net zero emissions by 2050 and stay below a maximum increase of 1.5 degrees C in global temperatures.

The clock is ticking, and we are behind. The largest molecule management infrastructure investment in history must happen for us to reach these goals. It's mission-critical as one of the three things we simply cannot fail at to achieve net zero by 2050. SCS Technologies is very focused on being an intentional part of the tremendous supply chain buildout to support the infrastructure buildout.

EC: How does the new office in the Ion support these plans?


CJ: SCS Technologies needs to collaborate with the brightest minds working on the energy transition challenges. To contribute meaningfully to the overall effort and to be the thought leader in the methane vapor recovery and CO2 compression and measurement niche, we need to be at the heart of the energy transition collaboration community. That beating heart is the Ion in Houston.

EC: What role does your new COO, René Vandersalm, play in SCS evolving with the energy transition?


CJ: René is a proven executive in growing mission-critical design and fabrication capacity without sacrificing quality. René’s experience, capabilities, and global network will play a key role in our path forward.

EC: Based in West Texas, SCS has a growing presence in Houston. Why do you see Houston as a leader in the energy transition?

CJ: West Texas has an amazing group of oil and gas professionals and infrastructure. We are proud of that heritage and will always maintain our roots and foundation there. Houston has the only community of engineers, scientists, universities, companies, investors, and key professional service providers that can deliver on the buildout of the molecule management infrastructure required to buy the electron management infrastructure folks time to transition fully to green energy after 2050.

This is a relay race – a race that has already started. Houston is the place where the baton will be handed off – it’s the place where the race is occurring. SCS Technologies is determined to be part of this solution dreamed of and planned in Houston and then executed in the Permian Basin, where we call home.

------

This conversation has been edited for brevity and clarity.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Meta to buy all power from new ENGIE Texas solar farm

power purchase

Meta, the parent company of social media platform Facebook, has agreed to buy all of the power from a $900 million solar farm being developed near Abilene by Houston-based energy company ENGIE North America.

The 600-megawatt Swenson Ranch solar farm, located in Stonewall County, will be the largest one ever built in the U.S. by ENGIE. The solar farm is expected to go online in 2027.

Meta will use electricity generated by the solar farm to power its U.S. data centers. All told, Meta has agreed to purchase more than 1.3 gigawatts of renewable energy from four ENGIE projects in Texas.

“This project marks an important step forward in the partnership between our two companies and their shared desire to promote a sustainable and competitive energy model,” Paulo Almirante, ENGIE’s senior executive vice president of renewable and flexible power, said in a news release.

In September, ENGIE North America said it would collaborate with Prometheus Hyperscale, a developer of sustainable liquid-cooled data centers, to build data centers at ENGIE-owned renewable energy and battery storage facilities along the I-35 corridor in Texas. The corridor includes Austin, Dallas-Fort Worth, San Antonio and Waco.

The first projects under the ENGIE-Prometheus umbrella are expected to go online in 2026.

ENGIE and Prometheus said their partnership “brings together ENGIE's deep expertise in renewables, batteries, and energy management and Prometheus' highly efficient liquid-cooled data center design to meet the growing demand for reliable, sustainable compute capacity — particularly for AI and other high-performance workloads.”

Fervo named to prestigious list of climate tech companies to watch

top honor

Houston-based Fervo Energy has received yet another accolade—MIT Technology Review named the geothermal energy startup to its 2025 list of the 10 global climatetech companies to watch.

Fervo, making its second appearance on the third annual list, harnesses heat from deep below the ground to generate clean geothermal energy, MIT Technology Review noted. Fervo is one of four U.S. companies to land on the list.

Fervo “uses fracking techniques to create geothermal reservoirs capable of delivering enough electricity to power massive data centers and hundreds of thousands of homes,” MIT Technology Review said.

MIT Technology Review said it produces the annual list to draw attention to promising climatetech companies that are working to decarbonize major sectors of the economy.

“Though the political and funding landscape has shifted dramatically in the US since the last time we put out this list,” MIT Technology Review added, “nothing has altered the urgency of the climate dangers the world now faces — we need to rapidly curb greenhouse gas emissions to avoid the most catastrophic impacts of climate change.”

In addition to MIT Technology Review’s companies-to-watch list, Fervo has appeared on similar lists published by Inc.com, Time magazine and Climate Insider.

In an essay accompanying MIT Technology Review’s list, Microsoft billionaire Bill Gates said his Breakthrough Energy Ventures investment group has invested in more than 150 companies, including Fervo and another company on the MIT Technology Review list, Redwood Materials.

In his essay, Gates wrote that ingenuity is the best weapon against climate change.

Yet climate technology innovations “offer more than just a public good,” he said. “They will remake virtually every aspect of the world’s economy in the coming years, transforming energy markets, manufacturing, transportation, and many types of industry and food production. Some of these efforts will require long-term commitments, but it’s important that we act now. And what’s more, it’s already clear where the opportunities lie.”

In a recent blog post highlighting Fervo, Gates predicted geothermal will eventually supply up to 20 percent of the world’s electricity, up from his previous estimate of as much as 5 percent.

Fervo is one of the pioneers in geothermal energy. Gates and other investors have pumped $982 million into Fervo since its founding in 2017. With an estimated valuation of $1.4 billion, Fervo has achieved unicorn status, meaning its valuation as a private company exceeds $1 billion.

Aside from Breakthrough Energy Ventures, oilfield services provider Liberty Energy is a Fervo investor. U.S. Energy Secretary Chris Wright was chairman and CEO of Denver-based Liberty Energy before assuming his federal post.

Axios reported on Oct. 1 that Fervo is raising a $300 million series E round, which would drive up the startup’s valuation. News of the $300 million round comes as the company gears up for a possible IPO, according to Axios.

Fervo co-founder and CEO Tim Latimer told Axios this spring that a potential IPO is likely in 2026 or 2027. Ahead of an IPO, the startup is aiming for a $2 billion to $4 billion valuation, Axios reported.

The first phase of Fervo’s marquee Cape Station geothermal energy plant in Utah is scheduled to go online next year, with the second phase set to open in 2028. Once it’s completed, the plant will be capable of generating 500 megawatts of power. This summer, the startup said it secured $205.6 million in capital to finance construction of the plant.

Rice University team develops eco-friendly method to destroy 'forever chemicals' in water

clean water research

Rice University researchers have teamed up with South Korean scientists to develop the first eco-friendly technology that captures and destroys toxic “forever chemicals,” or PFAS, in water.

PFAS have been linked to immune system disruption, certain cancers, liver damage and reproductive disorders. They can be found in water, soil and air, as well as in products like Teflon pans, waterproof clothing and food packaging. They do not degrade easily and are difficult to remove.

Thus far, PFAS cleanup methods have relied on adsorption, in which molecules cling to materials like activated carbon or ion-exchange resins. But these methods tend to have limited capacity, low efficiency, slow performance and can create additional waste.

The Rice-led study, published in the journal Advanced Materials, centered on a layered double hydroxide (LDH) material made from copper and aluminum that could rapidly capture PFAS and be used to destroy the chemicals.

The study was led by Rice professor Youngkun Chung, a postdoctoral fellow under the mentorship of Michael S. Wong. It was conducted in collaboration with Seoktae Kang, professor at the Korea Advanced Institute of Science and Technology, and Keon-Ham Kim, professor at Pukyung National University, who first discovered the LDH material.

The team evaluated the LDH material in river water, tap water and wastewater. And, according to Rice, that material’s unique copper-aluminum layers and charge imbalances created an ideal binding environment to capture PFAS molecules.

“To my astonishment, this LDH compound captured PFAS more than 1,000 times better than other materials,” Chung, lead author of the study and now a fellow at Rice’s WaTER (Water Technologies, Entrepreneurship and Research) Institute and Sustainability Institute, said in a news release. “It also worked incredibly fast, removing large amounts of PFAS within minutes, about 100 times faster than commercial carbon filters.”

Next, Chung, along with Rice professors Pedro Alvarez and James Tour, worked to develop an eco-friendly, sustainable method of thermally decomposing the PFAS captured on the LDH material. They heated saturated material with calcium carbonate, which eliminated more than half of the trapped PFAS without releasing toxic by-products.

The team believes the study’s results could potentially have large-scale applications in industrial cleanups and municipal water treatments.

“We are excited by the potential of this one-of-a-kind LDH-based technology to transform how PFAS-contaminated water sources are treated in the near future,” Wong added in the news release. “It’s the result of an extraordinary international collaboration and the creativity of young researchers.”

---

This article originally appeared on our sister site, InnovationMap.