guest column

Houston expert: Moving the needle on methane emissions

Methane emissions are rising—about 25 percent in the past 20 years, and still going up— but they are difficult to measure and track. What can be done? Photo via Canva

Here’s the bad news. In 2019, methane (CH4) accounted for about 10 percent of all U.S. greenhouse gas emissions from human activities, such as those related to natural gas extraction and livestock farming. Methane doesn’t last as long in the atmosphere as carbon dioxide, but is more efficient at trapping radiation; over a 100-year period, the comparative impact of CH4 is 25 times greater than CO2. To put it another way, one metric ton of methane equals 84 metric tons of carbon dioxide (see chart). Finally, while methane emissions are rising—about 25 percent in the past 20 years, and still going up—they are difficult to measure and track.

No alt text provided for this image

Source: McKinsey.com

And here’s the good news. Five industries—agriculture, oil and gas, coal mining, solid waste management, and wastewater—account for almost all of human-made methane emissions. There are practical things these industries can do, right now, at reasonable cost and using existing technologies, that could cut emissions by almost half (46 percent) in 2050. That said, it will be easier for some industries than for others. Take agriculture. Most of its emissions come from cows and sheep, which produce methane during digestion; in fact, animals account for more carbon dioxide equivalent (CO₂e) emissions than every country except China, according to a recent McKinsey report. Dealing with billions of animals, dispersed on farms small and large all over the world is, to put it mildly, complicated. Certain kinds of feed additives, for example, can reduce the formation of methane, cow by cow—but is expensive ($50 per tCO₂e and up). This add costs to farmers, without any economic benefits to them, and makes food more expensive. That’s a tough sell.

On the other hand, the energy industry accounts for 20 to 25 percent of methane emissions; its operations are fairly consolidated, and there are significant resources and expertise at hand. Plus, in many cases, there are genuine economic opportunities. For example, plugging methane leaks means less gas gets lost. Large volumes of methane emissions that are now treated as a waste could be recovered and sold as natural gas—something that is not always economic to do, but could be as gas prices rise or conditions change. According to the International Energy Agency (IEA), the industry flares approximately 90 Mt of methane per year, losing $12 billion to $19 billion in value. Over time, too, normal maintenance and upgrading strategies can also reduce emissions, for example, by replacing pumps with instrument air systems. There are many different ways to prevent losses in upstream production, including leak detection and repair, equipment electrification, and vapor recovery units.

No alt text provided for this image

Source: McKinsey.com

In the short term, meaning over the next decade, the IEA says that these and other changes could reduce emissions 40 percent (at 2019 gas prices), while more than paying for themselves. In effect, there is low-hanging fruit out there. The full potential, according to McKinsey, is 75 percent fewer emissions by 2050, but to get there, things get more expensive, somewhere in the range of $20 per tCO₂e.

Naturally, oil and gas players are not eager to embrace added costs, and these will eventually be passed on to consumers. But the industry is looking at a future that is carbon-constrained in one way or another, either through a price on carbon, or regulation, or both. It might well be that addressing methane emissions provides a way to decarbonize its operations at reasonable cost. And while there is little brand equity to natural gas at the moment—no one shops for it by name—it is possible that in decades to come, companies that can show they are producing low- or zero-carbon gas might be able to command a price premium.

Much of the oil and gas industry doesn’t disagree with this analysis. The International Group of Liquefied Natural Gas Importers, a trade group, has made the case that “abating greenhouse gas emissions (from wellhead to terminal outlet), in particular fugitive methane emissions,” is important. On the oil side, the American Petroleum Institute, as part of its climate action plan, has called for the development of methane detection technologies, and reducing flaring to zero: “We support cost-effective policies and direct regulation that achieve methane emission reductions from new and existing sources across the supply chain.” And the Oil and Gas Climate Initiative, whose companies account for almost 30 percent of global production, are also on board, calling the reduction of methane emissions to near zero “a top priority.” Back in 2017, the Houston Chronicle, the home paper of the Texas oil and gas industry, argued for better practices: “If Texas wants the world to buy our LNG exports, a sign of environmental good faith would go a long way.” And in fact there has been progress: the OGCI estimates that methane emissions are have declined 33 percent from 2017-20.

On the whole, then, this looks like one area of climate policy where there is broad consensus. Methane matters. According to one science paper, dealing with it “could slow the global-mean rate of near-term decadal warming by around 30 percent.” Just the oil-and-gas industry’s share, then, could make a measurable difference. I am not saying getting methane emissions way down will be easy, but the industry knows what to do and how to do it. It is in its interest, and that of the planet, to do so.

------------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally ran on LinkedIn on October 21, 2021.

Trending News

A View From HETI

Liangzi Deng (left) and Paul C.W. Chu of the Texas Center for Superconductivity and the Dept. of Physics at the University of Houston received funding for their work. Photo courtesy of UH

Researchers at the Department of Physics at the University of Houston and Texas Center for Superconductivity have received a second-year funding from global leader in business of invention Intellectual Ventures to continue their work on exploring superconductivity,

The project, which is led by Paul C. W. Chu, T.L.L. Temple Chair of Science, professor of physics and founding director of the TcSUH and assistant professor of physics and a new TcSUH principal investigator Liangzi Deng, has been awarded $767,000 to date.

“Working with IV gives us the freedom known for scientific pursuit and at the same time provides intellectual guidance and assistance in accord with the mission goal,” Chu says in a news release.

The researchers are working on making superconductivity easier to achieve. At room temperature and normal atmospheric pressure is where the researchers are looking to simplify superconductivity. One finding from Chu and Deng’s team is called pressure-quench protocol, or PQP.The PQP will help maintain key properties (like superconductivity) in certain materials after the high pressure needed to create them is removed.

“Intellectual Ventures funded this research because Paul Chu is one of the acknowledged thought leaders in the area of superconductivity with a multi-decade track record of scientific innovation and creativity,” Brian Holloway, vice president of IV’s Deep Science Fund and Enterprise Science Fund, adds. “The work led by Chu and Deng on pressure quenching could result in game-changing progress in the field. We are very excited about the preliminary results from the first year and we look forward to continuing this collaboration.”

The project showed early success the first year, as the research used a special system to synthesize materials under high temperatures and pressure. The second-year projects will include the investigation of pressure-induced/enhanced superconductivity in cuprates and hydrides.

“If successful, UH will once again break the record for the highest superconducting Tc at atmospheric pressure,” Deng says in the release. “Additionally, we will collaborate closely with theorists to uncover the mechanism of PQP. Our research has far-reaching implications, with the potential to extend beyond superconductors to other material systems.”

Trending News