Methane emissions are rising—about 25 percent in the past 20 years, and still going up— but they are difficult to measure and track. What can be done? Photo via Canva

Here’s the bad news. In 2019, methane (CH4) accounted for about 10 percent of all U.S. greenhouse gas emissions from human activities, such as those related to natural gas extraction and livestock farming. Methane doesn’t last as long in the atmosphere as carbon dioxide, but is more efficient at trapping radiation; over a 100-year period, the comparative impact of CH4 is 25 times greater than CO2. To put it another way, one metric ton of methane equals 84 metric tons of carbon dioxide (see chart). Finally, while methane emissions are rising—about 25 percent in the past 20 years, and still going up—they are difficult to measure and track.

No alt text provided for this image

Source: McKinsey.com

And here’s the good news. Five industries—agriculture, oil and gas, coal mining, solid waste management, and wastewater—account for almost all of human-made methane emissions. There are practical things these industries can do, right now, at reasonable cost and using existing technologies, that could cut emissions by almost half (46 percent) in 2050. That said, it will be easier for some industries than for others. Take agriculture. Most of its emissions come from cows and sheep, which produce methane during digestion; in fact, animals account for more carbon dioxide equivalent (CO₂e) emissions than every country except China, according to a recent McKinsey report. Dealing with billions of animals, dispersed on farms small and large all over the world is, to put it mildly, complicated. Certain kinds of feed additives, for example, can reduce the formation of methane, cow by cow—but is expensive ($50 per tCO₂e and up). This add costs to farmers, without any economic benefits to them, and makes food more expensive. That’s a tough sell.

On the other hand, the energy industry accounts for 20 to 25 percent of methane emissions; its operations are fairly consolidated, and there are significant resources and expertise at hand. Plus, in many cases, there are genuine economic opportunities. For example, plugging methane leaks means less gas gets lost. Large volumes of methane emissions that are now treated as a waste could be recovered and sold as natural gas—something that is not always economic to do, but could be as gas prices rise or conditions change. According to the International Energy Agency (IEA), the industry flares approximately 90 Mt of methane per year, losing $12 billion to $19 billion in value. Over time, too, normal maintenance and upgrading strategies can also reduce emissions, for example, by replacing pumps with instrument air systems. There are many different ways to prevent losses in upstream production, including leak detection and repair, equipment electrification, and vapor recovery units.

No alt text provided for this image

Source: McKinsey.com

In the short term, meaning over the next decade, the IEA says that these and other changes could reduce emissions 40 percent (at 2019 gas prices), while more than paying for themselves. In effect, there is low-hanging fruit out there. The full potential, according to McKinsey, is 75 percent fewer emissions by 2050, but to get there, things get more expensive, somewhere in the range of $20 per tCO₂e.

Naturally, oil and gas players are not eager to embrace added costs, and these will eventually be passed on to consumers. But the industry is looking at a future that is carbon-constrained in one way or another, either through a price on carbon, or regulation, or both. It might well be that addressing methane emissions provides a way to decarbonize its operations at reasonable cost. And while there is little brand equity to natural gas at the moment—no one shops for it by name—it is possible that in decades to come, companies that can show they are producing low- or zero-carbon gas might be able to command a price premium.

Much of the oil and gas industry doesn’t disagree with this analysis. The International Group of Liquefied Natural Gas Importers, a trade group, has made the case that “abating greenhouse gas emissions (from wellhead to terminal outlet), in particular fugitive methane emissions,” is important. On the oil side, the American Petroleum Institute, as part of its climate action plan, has called for the development of methane detection technologies, and reducing flaring to zero: “We support cost-effective policies and direct regulation that achieve methane emission reductions from new and existing sources across the supply chain.” And the Oil and Gas Climate Initiative, whose companies account for almost 30 percent of global production, are also on board, calling the reduction of methane emissions to near zero “a top priority.” Back in 2017, the Houston Chronicle, the home paper of the Texas oil and gas industry, argued for better practices: “If Texas wants the world to buy our LNG exports, a sign of environmental good faith would go a long way.” And in fact there has been progress: the OGCI estimates that methane emissions are have declined 33 percent from 2017-20.

On the whole, then, this looks like one area of climate policy where there is broad consensus. Methane matters. According to one science paper, dealing with it “could slow the global-mean rate of near-term decadal warming by around 30 percent.” Just the oil-and-gas industry’s share, then, could make a measurable difference. I am not saying getting methane emissions way down will be easy, but the industry knows what to do and how to do it. It is in its interest, and that of the planet, to do so.

------------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally ran on LinkedIn on October 21, 2021.

Lignium combats greenhouse gasses with a green fuel that boasts an enviably low carbon footprint. Photo courtesy of Lignium

Why this growing Chilean clean energy company moved its HQ to Houston

future of farming

In Houston, air pollution is usually more of an abstract concept than a harsh reality. But in parts of Chile, the consequences of heating homes with wet wood are catching up to residents.

“Given all the contamination, there are times kids aren’t allowed to go to school. The air pollution is really affecting people’s health,” says Agustín Ríos, COO of Lignium Energy.

Additionally, the methane and nitrous oxide produced by cattle farming are a problem. But Lignium Energy, an international company started in Chile and now headquartered in Houston’s Greentown Labs, has a solution that can solve both problems by upending the latter.

“There’s a lack of solutions with the problem of manure. Methane gases are destroying our planet,” says CEO and co-founder Enrique Guzmán. He goes on to say that most solutions currently being developed are expensive and complex. But not Lignium Energy’s method, invented by co-founder José Antonio Caraball.

Caraball has patented an extraordinarily simple concept. Lignium separates the solid from liquid excretions, then cleans the solid to generate a hay-like biomass. Biomass refers to organic matter that can be used as fuel. What Lignium makes from the cattle evacuations is a clean, odorless and highly calorific biomass.

Essentially, Lignium combats greenhouse gasses with a green fuel that boasts an enviably low carbon footprint. “Our process is very cheap and very simple. That’s why we are a great solution,” explains Guzmán.

Caraball, an industrial engineer, came up with the idea six years ago, says Guzmán. Five years ago, he began working with the company, one year ago, Guzmán and Ríos picked up and moved to Houston.

“We decided to move out of Chile due to market size,” says Ríos. However, the product is already being sold to consumers in its homeland.

Why Houston? The reason was twofold. As an energy company, Ríos says that they wanted to be in “the energy capital of the world.” But Texas is also one of the largest sites of cattle farming on the planet. Lignium prefers to work with farms with more than 500 head to optimize harvesting the waste that becomes biomass.

With that in mind, Lignium has partnered with Southwest Regional Dairy Center in Stephenville, Texas, a little more than an hour southwest of Fort Worth, a town known as the world’s rodeo capital. The facility is associated with Texas A&M, though Guzmán says Lignium is not officially associated with the university.

Guzmán says that the company is currently hiring a team member to help Lignium figure out commercial logistics, as well as four or five other Houstonians who will help them take their product to market in the United States, and eventually around the globe. For now, he predicts that they will be able to sell to consumers in this country by early next year, if not the fourth quarter of 2023.

“We are very committed to the solution because, at the end of the day, if we do good work with the company, we are sure we can give better conditions to the cattle industry,” says Guzmán. “Then we can make a big impact on a real problem.

------

This article originally ran on InnovationMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

4 Houston energy companies pledge financial support in wake of Hurricane Beryl

donation station

Four major energy companies in the Houston area have chipped in more than $400,000 to support relief efforts for Hurricane Beryl in Southeast Texas. Nationwide, it’s estimated that the storm caused at least $28 billion in damage and economic losses.

Here’s a breakdown of contributions announced by the four energy companies.

Baker Hughes Foundation

The Baker Hughes Foundation, the philanthropic arm of Houston-based energy technology company Baker Hughes, gave a $75,000 grant to the Houston chapter of the American Red Cross for Hurricane Beryl relief efforts.

“We understand recovery and rebuilding can take weeks or months, and we support the American Red Cross’ mission of providing people with clean water, safe shelter, and food when they need them most,” says Lorenzo Simonelli, chairman and CEO of Baker Hughes.

CenterPoint Energy

Houston-based CenterPoint Energy, which at one point had more than 2 million customers without power due to Hurricane Beryl, says its foundation has donated to several disaster relief organizations in the region. These include the American Red Cross of Coastal Bend, Catholic Charities of the Archdiocese of Galveston-Houston, Combined Arms, and the 4B Disaster Response Network in Brazoria and Galveston counties.

As of July 11, the company had also provided:

  • More than 30,000 bottles of water to cooling centers and distribution centers in the Houston area.
  • Meals to local first responders.
  • Mobile power generation at cooling centers, hospitals, senior living centers, and water treatment plants.

CenterPoint didn’t assign a dollar value to its contributions.

“Our first priority is getting the lights back on. At the same time, we have seen firsthand the devastation our neighbors are facing, and our commitment to the community goes beyond restoration efforts,” says Lynnae Wilson, senior vice president of CenterPoint’s electric business.

ConocoPhillips

Houston-based ConocoPhillips contributed $200,000 to relief efforts for Hurricane Beryl. The company also is matching donations from U.S. employees of ConocoPhillips.

The money is being split among the Houston Food Bank, Salvation Army and American Red Cross.

“Houston is our hometown, and many of our employees and neighbors have been impacted by Hurricane Beryl,” says Ryan Lance, chairman and CEO of ConocoPhillip.

Entergy Texas

Entergy Texas, based in The Woodlands, donated $125,000 to the American Red Cross for Hurricane Beryl relief efforts. The money will go toward emergency needs such as food, shelter, and medical care.

“Our commitment to helping communities in distress remains unwavering, and we are hopeful that our contribution will offer relief and comfort to those facing hardships in the storm’s aftermath,” says Eliecer Viamontes, president and CEO of Entergy Texas.

Entergy Texas supplies electricity to about 512,000 customers in 27 counties. It’s a subsidiary of New Orleans-based Entergy Corp.

Houston energy data SaaS co. expands to new platform

making moves

In an effort to consolidate and improve energy data and forecasting, a Houston software company has expanded to a new platform.

Amperon announced that it has expanded its AI-powered energy forecaststoSnowflake Marketplace, an AI data cloud company. With the collaboration, joint customers can seamlessly integrate accurate energy forecasts into power market trading. The technology that Amperon provides its customers — a comprehensive, AI-backed data analytics platform — is key to the energy industry and the transition of the sector.

“As Amperon continues to modernize energy data and AI infrastructure, we’re excited to partner with Snowflake to bring the most accurate energy forecasts into a single data experience that spans multiple clouds and geographies," Alex Robart, chief revenue officer at Amperon, says in a news release. "By doing so, we’re bringing energy forecasts to where they will be accessible to more energy companies looking to increase performance and reliability."

Together, the combined technology can move the needle on enhanced accuracy in forecasting that strengthens grid reliability, manages monetary risk, and advances decarbonization.

“This partnership signifies Amperon’s commitment to deliver world-class data-driven energy management solutions," Titiaan Palazzi, head of power and Utilities at Snowflake, adds. "Together, we are helping organizations to easily and securely access the necessary insights to manage risk and maximize profitability in the energy transition."

With Amperon's integrated short-term demand and renewables forecasts, Snowflake users can optimize power markets trading activity and manage load risk.

"Amperon on Snowflake enables us to easily integrate our different data streams into a single unified view," Jack Wang, senior power trader and head of US Power Analysis at Axpo, says. "We value having complete access and control over our analytics and visualization tools. Snowflake allows us to quickly track and analyze the evolution of every forecast Amperon generates, which ultimately leads to better insights into our trading strategy."

Amperon, which recently expanded operations to Europe, closed a $20 million series B round last fall led by Energize Capital and tripled its team in the past year and a half.

In March, Amperon announced that it replatformed its AI-powered energy analytics technology onto Microsoft Azure.

Learn more about the company on the Houston Innovators Podcast episode with Sean Kelly, co-founder and CEO of Amperon.

Houston logistics company works toward software solutions to energy transition challenges

offshore shipping

For several years now, Matthew Costello has been navigating the maritime shipping industry looking for problems to solve for customers with his company, Voyager Portal.

Initially, that meant designing a software platform to enhance communications and organization of the many massive and intricate global shipments happening every day. Founded in 2018 by Costello and COO Bret Smart, Voyager Portal became a integral tool for the industry that helps users manage the full lifecycle of their voyages — from planning to delivery.

"The software landscape has changed tremendously in the maritime space. Back in 2018, we were one of a small handful of technology startups in this space," Costello, who serves as CEO of Voyager, says on the Houston Innovators Podcast. "Now that's changed. ... There's really a huge wave of innovation happening in maritime right now."

And, predictably, some of those waves are caused by new momentum within the energy transition.

"The energy transition has thrown up a lot of questions for everyone in the maritime industry," Costello says. "The regulations create a lot of questions around cost primarily. ... And that has created a huge number of opportunities for technology."

Fuel as a primary cost for the maritime industry. These cargo ships are traversing the world 24/7 and burning fuel at all times. Costello says there's an increased focus on the fuel process — "all with a goal of essentially reducing carbon intensity usage."

One of the ways to move the needle on reducing the carbon footprint of these ships is optimizing the time spent in port, and specifically the delays associated. Demurrage are charges associated with delays in loading and unloading cargo within maritime shipping, and Costello estimates that the total paid globally in demurrage fees is around $10 billion to $20 billion a year.

"These fees can be huge," Costello says. "What technology has really enabled with this problem of demurrage is helping companies drill down to the true root cause of what something is happening."

All this progress is thanks to the enhancement — and wider range of acceptance — of data analysis and artificial intelligence.

Costello, who says Voyager has been improving its profitability every quarter for the last year, has grown the business to around 40 employees in its headquarters of Houston and three remote offices in Brazil, London, and Singapore. The company's last round of funding was a series A in 2021. Costello says the next round, if needed, would be next year.

In the meantime, Voyager is laser focused on providing optimized, cost-saving, and sustainable solutions for its customers — around half of which are headquartered or have a significant presence in Houston. For Costello, that's all about putting the control back into the hands of his customers.

"If we think back to the real problems the industry faces, a lot of them are controlled by different groups and parties. The fact that a ship cannot get in and out of a port quickly is not necessarily a function of one party's issue — it's a multitude of issues, and there's no one factor," Costello says on the show. "To really make the whole process efficient end-to-end you need to provide the customer to access and options for different means of getting cargo from A to B — and you need to have a sense of control in that process."

———

This article originally ran on InnovationMap.