What lies ahead over the next year? Photo via Getty Images

Oil prices are once again riding the waves of geopolitics. Uncertainty remains a key factor shaping global energy trends.

As of June 25, 2025, U.S. gas prices were averaging around $3.22 per gallon, well below last summer’s levels and certainly not near any recent high. Meanwhile, Brent crude is trading near $68 per barrel, though analysts warn that renewed escalation especially involving Iran and the Strait of Hormuz could push prices above $90 or even $100. Trump’s recent comments that China may continue purchasing Iranian oil add yet another layer of geopolitical complexity.

So how should we think about the state of the oil market and what lies ahead over the next year?

That question was explored on the latest episode of The Energy Forum with experts Skip York and Abhi Rajendran, who both bring deep experience in analyzing global oil dynamics.

“About 20% of the world’s oil and LNG flows through the Strait of Hormuz,” said Skip. “When conflict looms, even the perception of disruption can move the market $5 a barrel or more.”

This is exactly what we saw recently: a market reacting not just to actual supply and demand, but to perceived risk. And that risk is compounding existing challenges, where global demand remains steady, but supply has been slow to respond.

Abhi noted that U.S. shale production has been flat so far this year, and that given the market’s volatility, it’s becoming harder to stay short on oil. In his view, a higher price floor may be taking hold, with longer-lasting upward pressure likely if current dynamics continue.

Meanwhile, OPEC+ is signaling supply increases, but actual delivery has underwhelmed. Add in record-breaking summer heat in the Middle East, pulling up seasonal demand, and it’s easy to see why both experts foresee a return to the $70–$80 range, even without a major shock.

Longer-term, structural changes in China’s energy mix are starting to reshape demand patterns globally. Diesel and gasoline may have peaked, while petrochemical feedstock growth continues.

Skip noted that China has chosen to expand mobility through “electrons, not molecules,” a reference to electric vehicles over conventional fuels. He pointed out that EVs now account for over 50% of monthly vehicle sales, a signal of a longer-term shift in China’s energy demand.

But geopolitical context matters as much as market math. In his recent policy brief, Jim Krane points out that Trump’s potential return to a “maximum pressure” campaign on Iran is no longer guaranteed strong support from Gulf allies.

Jim points out that Saudi and Emirati leaders are taking a more cautious approach this time, worried that another clash with Iran could deter investors and disrupt progress on Vision 2030. Past attacks and regional instability continue to shape their more restrained approach.

And Iran, for its part, has evolved. The “dark fleet” of sanctions-evasion tankers has expanded, and exports are booming up to 2 million barrels per day, mostly to China. Disruption won’t be as simple as targeting a single export terminal anymore, with infrastructure like the Jask terminal outside the Strait of Hormuz.

Where do we go from here?

Skip suggests we may see prices drift upward through 2026 as OPEC+ runs out of spare capacity and U.S. shale declines. Abhi is even more bullish, seeing potential for a quicker climb if demand strengthens and supply falters.

We’re entering a phase where geopolitical missteps, whether in Tehran, Beijing, or Washington, can have outsized impacts. Market fundamentals matter, but political risk is the wildcard that could rewrite the price deck overnight.

As these dynamics continue to evolve, one thing is clear: energy policy, diplomacy, and investment strategy must be strategically coordinated to manage risk and maintain market stability. The stakes for global markets are simply too high for misalignment.

------------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally appeared on LinkedIn.

U.S. LNG is essential to balancing global energy markets for the decades ahead. Photo via Getty Images

Houston expert: The role of U.S. LNG in global energy markets

guest column

The debate over U.S. Liquefied Natural Gas (LNG) exports is too often framed in misleading, oversimplified terms. The reality is clear: LNG is not just a temporary fix or a bridge fuel, it is a fundamental pillar of global energy security and economic stability. U.S. LNG is already reducing coal use in Asia, strengthening Europe’s energy balance, and driving economic growth at home. Turning away from LNG exports now would be a shortsighted mistake, undermining both U.S. economic interests and global energy security.

Ken Medlock, Senior Director of the Baker Institute’s Center for Energy Studies, provides a fact-based assessment of the U.S. LNG exports that cuts through the noise. His analysis, consistent with McKinsey work, confirms that U.S. LNG is essential to balancing global energy markets for the decades ahead. While infrastructure challenges and environmental concerns exist, the benefits far outweigh the drawbacks. If the U.S. fails to embrace its leadership in LNG, we risk giving up our position to competitors, weakening our energy resilience, and damaging national security.

LNG Export Licenses: Options, Not Guarantees

A common but deeply flawed argument against expanding LNG exports is the assumption that granting licenses guarantees unlimited exports. This is simply incorrect. As Medlock puts it, “Licenses are options, not guarantees. Projects do not move forward if they are unable to find commercial footing.”

This is critical: government approvals do not dictate market outcomes. LNG projects must navigate economic viability, infrastructure feasibility, and global demand before becoming operational. This reality should dispel fears that expanded licensing will automatically lead to an uncontrolled surge in exports or domestic price spikes. The market, not government restrictions, should determine which projects succeed.

Canada’s Role in U.S. Gas Markets

The U.S. LNG debate often overlooks an important factor: pipeline imports from Canada. The U.S. and Canadian markets are deeply intertwined, yet critics often ignore this reality. Medlock highlights that “the importance to domestic supply-demand balance of our neighbors to the north and south cannot be overstated.”

Infrastructure Constraints and Price Volatility

One of the most counterproductive policies the U.S. could adopt is restricting LNG infrastructure development. Ironically, such restrictions would not only hinder exports but also drive up domestic energy prices. Medlock’s report explains this paradox: “Constraints that either raise development costs or limit the ability to develop infrastructure tend to make domestic supply less elastic. Ironically, this has the impact of limiting exports and raising domestic prices.”

The takeaway is straightforward: blocking infrastructure development is a self-inflicted wound. It stifles market efficiency, raises costs for American consumers, and weakens U.S. competitiveness in global energy markets. McKinsey research confirms that well-planned infrastructure investments lead to greater price stability and a more resilient energy sector. The U.S. should be accelerating, not hindering, these investments.

Short-Run vs. Long-Run Impacts on Domestic Prices

Critics of LNG exports often confuse short-term price fluctuations with long-term market trends. This is a mistake. Medlock underscores that “analysis that claims overly negative domestic price impacts due to exports tend to miss the distinction between short-run and long-run elasticity.”

Short-term price shifts are inevitable, driven by seasonal demand and supply disruptions. But long-term trends tell a different story: as infrastructure improves and production expands, markets adjust, and price impacts moderate. McKinsey analysis suggests supply elasticity increases as producers respond to price signals. Policy decisions should be grounded in this broader economic reality, not reactionary fears about temporary price movements.

Assessing the Emissions Debate

The argument that restricting U.S. LNG exports will lower global emissions is fundamentally flawed. In fact, the opposite is true. Medlock warns against “engineering scenarios that violate basic economic principles to induce particular impacts.” He emphasizes that evaluating emissions must be done holistically. “Constraining U.S. LNG exports will likely mean Asian countries will continue to turn to coal for power system balance,” a move that would significantly increase global emissions.

McKinsey’s research reinforces that, on a lifecycle basis, U.S. LNG produces fewer emissions than coal. That said, there is room for improvement, and efforts should focus on minimizing methane leakage and optimizing gas production efficiency.

However, the broader point remains: restricting LNG on environmental grounds ignores the global energy trade-offs at play. A rational approach would address emissions concerns while still recognizing the role of LNG in the global energy system.

The DOE’s Commonwealth LNG Authorization

The Department of Energy’s recent conditional approval of the Commonwealth LNG project is a step in the right direction. It signals that economic growth, energy security, and market demand remain key considerations in regulatory decisions. Medlock’s analysis makes it clear that LNG exports will be driven by market forces, and McKinsey’s projections show that global demand for flexible, reliable LNG is only increasing.

The U.S. should not limit itself with restrictive policies when the rest of the world is demanding more LNG. This is an opportunity to strengthen our position as a global energy leader, create jobs, and ensure long-term energy security.

Conclusion

The U.S. LNG debate must move beyond fear-driven narratives and focus on reality. The facts are clear: LNG exports strengthen energy security, drive economic growth, and reduce global emissions by displacing coal.

Instead of restrictive policies that limit LNG’s potential, the U.S. should focus on expanding infrastructure, maintaining market flexibility, and supporting innovation to further reduce emissions. The energy transition will be shaped by market realities, not unrealistic expectations.

The U.S. has an opportunity to lead. But leadership requires embracing economic logic, investing in infrastructure, and ensuring our policies are guided by facts, not political expediency. LNG is a critical part of the global energy landscape, and it’s time to recognize its long-term strategic value.

------------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally appeared on LinkedIn.

Scott Nyquist on what the path to net-zero will look like. Graphic via mckinsey.com

Column: Houston expert on what the path to net-zero will look like

guest column

The $275 trillion question: What does the road to net-zero look like?

That’s a good question, and McKinsey took a serious stab at providing an answer in a 2022 report, it considers the net-zero scenario described by the Network for Greening the Financial System (NGFS), a consortium of 105 central banks and financial institutions. McKinsey then describes the costs, benefits, and social and economic changes that would likely be required for the world to start, stay on, and finish the pathway described by the NGFS.

Here is what the report isn’t, and what it doesn’t do. It isn’t a roadmap to net zero, and it does not make predictions. Rather, it offers estimates related to one specific scenario. It does not say who should pay. It does not address adaptation. It doesn’t even assume that restricting global temperature rises to 1.5 degrees Celsius by 2050 is achievable. It doesn’t assert that this is the best or only way to of. Indeed, it notes that “it is likely that real outcomes will diverge from these estimates.”

What the report does do is more interesting: with rigor and thoughtfulness, it thinks through what a genuine, global effort to get to net zero would take. Here are a few insights from the report I found particularly noteworthy.

It won’t come cheap. Capital spending by 2050 under the NGFS scenario would add up to $275 trillion, or $9.2 trillion per year on average. That is about $3.5 trillion a year more than is being spent today, or the equivalent of about half of global corporate profits in 2020. In addition, about $1 trillion of current spending would need to shift from high- to low-emissions assets. In short, it’s a lot of money. Of course, some of these costs are also investments that will deliver returns, and indeed the share that do so will probably rise over the decades. Upfront spending now could also reduce operating costs down the line, through greater efficiency and lower maintenance costs. And it’s important to keep in mind the considerable benefit of a healthier planet and a stable climate, with cleaner air and richer land. But the authors do not shy away from the larger point: “Reaching net-zero emissions will thus require a transformation of the global economy.”

Some countries are going to be hit harder than others. It’s hardly surprising to read that countries like Saudi Arabia, Russia, and Venezuela, which rely heavily on oil and gas resources, are going to have a more difficult time adjusting. The same is true for many developing economies. To some extent their residents can leapfrog to cleaner, greener technologies, just as they skipped the landline in favor of cellphones. But other factors weigh in. For example, developing countries are more likely to have high-emissions manufacturing as a major share of the economy; services are generally lower emission. In addition, poorer countries still have to build much of their infrastructure, which is costly. All this adds up. The report estimates that India and sub-Saharan Africa would need to spend almost 11 percent of its GDP on physical assets related to energy and land to get to net zero; in other Asian countries and Latin America, it is more than 9 percent. For Europe and the United States, by contrast, the figure is about 6 percent.

Now is better than later. An orderly, gradual transition would likely be both gentler and cheaper than a hasty, disorderly one. The report sees spending as “frontloaded,” meaning that there is more of it in the next decade to 15 years, and then it declines. That is because of the need for substantial capital investment. But why does this matter? There is timing, for one thing. If low emissions sources do not increase as fast (or preferably faster) than high-emissions ones are retired, there will be shortages or price rises. Both would be unpleasant, and could also cut into public support for change. And then there is the matter of money. If a coal plant is built today—as many are—and then has to be shut down, abruptly and well before its useful life over, a lot of money that was invested in it will never be recouped. The report estimates that as much as $2.1 trillion assets in the power sector alone could be stranded by 2050. Many of these assets are capitalized on the balance sheets of listed companies; shutting them down prematurely could bring bankruptcies and credit defaults, and that could affect the global financial system.

The world would look very different. Under the NGFS scenario, oil and gas production volumes in 2050 would be 55 percent and 70 percent lower, respectively, and coal would just about vanish. The market share for battery or fuel cell-electric vehicles would be close to 100 percent. Many existing jobs would disappear, and because these assets tend to be geographically concentrated, the effects on local communities would be harsh. For example, more than 10 percent of jobs in 44 US counties are in the coal, oil and gas, fossil fuel power, and automotive sectors. On the whole, McKinsey estimates that the transition could mean the loss of 187 million jobs—but the creation of 202 million new ones. Reaching net zero would also make demands on individuals, such as switching to electric vehicles, making their homes more energy efficient, and eating less meat like beef and lamb (cows and sheep are ruminants, emitting methane, a greenhouse gas).

There’s a lot else worth thinking about in the report, which goes into some detail about forestry and agriculture, for example, as well as the role of climate finance and what can be done to fill technology gaps. And its closing sentence is worth pondering: “The key issue is whether the world can muster the requisite boldness and resolve to broaden its response during the next decade or so, which will in all likelihood decide the nature of the transition.”

So, is something like this going to happen? I don’t know. There is certainly momentum. As of January 27, 2022, 136 countries accounting for almost 90 percent of both emissions and GDP, have signed up to the idea. But these pledges are not cast in stone, or indeed in legislation, in many places, and as a rule policy is running far short of the promise. “Moving to action,” the report notes dryly, “has not proven easy or straightforward.”

And while some things can be done from the top down, others cannot—such as the considerable shift in human diets away from high-emissions (and delicious) beef and lamb and more toward poultry and legumes. Moreover, inertia and vested interests are powerful forces. “Government and business would need to act together with singular unity, resolve, and ingenuity, and extend their planning and investment horizons even as they take immediate actions to manage risks and capture opportunities,” the report concludes. That’s a big ask.

So, like McKinsey, I am not going to make predictions. But for an analysis of what it would take, this is a valuable effort.

———

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally ran on LinkedIn on January 28, 2022.

Scott Nyquist on the future of technology and how they affect the energy industry. Photo via Getty Images

Houston expert: Where is tech going? And can the energy industry keep up?

guest column

When smart people come together to consider the future, it’s worth listening to them.

Not long ago, McKinsey brought together more than 60 experts, and asked them to name the most important technology trends for business. They started from the premise that the next 10 years will see more technological progress than in the previous 100 years—and that this will up-end companies and industries everywhere.

“We believe the technology disruption over the next few years will be equal to the industrial revolution,” says Nicolaus Henke, a McKinsey alum who participated in this Tech Trends Index, which will be updated annually.

Here are some of the specific predictions. More than three-quarters of enterprise-generated data will be processed by edge or cloud computing by 2025. Ten percent of global GDP could be associated with blockchain by 2027. Renewables will produce 75 percent of global energy by 2050. 5G could reach 80 percent of the world’s population by 2030.

Time will tell if any or all of these are right; personally, I think renewables will have to wait a little longer for that kind of dominance. But by and large, I found the list, and the underlying thinking, compelling. And given my background in oil-and-gas, I thought it was striking that parts of the energy industry are working on just about every single one of them. Here is the list:

  • Next-level process automation and visualization.
  • Future of connectivity.
  • Distributed infrastructure.
  • Next-generation computing.
  • Applied artificial intelligence (AI).
  • Future of programming.
  • Trust architecture.
  • Bio revolution.
  • Next-generation materials.
  • Future of clean technologies.

Specifically, the first half-dozen items are all connected to digitization, and while the energy industry may not be at the cutting edge of development, it has a long track record of integrating these technologies and safely deploying them in order to deliver low-cost and reliable supply.

For example, the oil and gas industry has used AI for years to evaluate reservoirs and to plan drilling—one of many improvements over the traditional “one rock, two geologists, three opinions" way of doing things. And advanced materials, such as composites, engineered polymers, and low-density/high-strength metals and alloys are commonly used to lower costs and improve performance, for example in deep water oil and gas production and rotating equipment. As for connectivity, there is no shortage of commitment, but I think it is fair to say that the full potential has not been tapped.

McKinsey has estimated that making use of advanced connectivity alone—to optimize drilling and production, as well as to improve maintenance and field operations—could translate into $250 billion in value by 2030. That is something that the industry could really use, given recent price fluctuations. Taken as a whole, while the industry is nowhere near completing a full digital transformation, it is certainly well on its way.

As for the item most clearly connected to the industry — No. 10, clean technologies — at first glance, this might seem like bad news for traditional energy players. Not so fast. There are clear opportunities in areas such as clean coal, carbon capture, and energy storage. Moreover, other kinds of clean technologies can help the industry decarbonize its operations—something that will become more important as carbon regulation gets more stringent.

As I see it, then, while parts of the industry may seem old-school, it is actually heavily engaged in almost everything on the list. That should come as no surprise. From the first time oil was pumped in Pennsylvania in 1859, it has innovated and adapted to integrate technologies that improved productivity, safety, and environmental performance. In fact, it could it could even be said that the sector is part of what is often known as the Fourth Industrial Revolution—the convergence and interaction of physical, digital, and biological technologies.

I, and many others in the industry, believe that the ongoing energy transition will likely suppress demand for fossil fuels in the long term. But while the items on the Tech Trends Index, together and separately, will be disruptive, requiring big changes in business models and day-to-day operations, they could also help the industry to adapt.

———

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally ran on LinkedIn on October 4, 2021.

Methane emissions are rising—about 25 percent in the past 20 years, and still going up— but they are difficult to measure and track. What can be done? Photo via Canva

Houston expert: Moving the needle on methane emissions

guest column

Here’s the bad news. In 2019, methane (CH4) accounted for about 10 percent of all U.S. greenhouse gas emissions from human activities, such as those related to natural gas extraction and livestock farming. Methane doesn’t last as long in the atmosphere as carbon dioxide, but is more efficient at trapping radiation; over a 100-year period, the comparative impact of CH4 is 25 times greater than CO2. To put it another way, one metric ton of methane equals 84 metric tons of carbon dioxide (see chart). Finally, while methane emissions are rising—about 25 percent in the past 20 years, and still going up—they are difficult to measure and track.

No alt text provided for this image

Source: McKinsey.com

And here’s the good news. Five industries—agriculture, oil and gas, coal mining, solid waste management, and wastewater—account for almost all of human-made methane emissions. There are practical things these industries can do, right now, at reasonable cost and using existing technologies, that could cut emissions by almost half (46 percent) in 2050. That said, it will be easier for some industries than for others. Take agriculture. Most of its emissions come from cows and sheep, which produce methane during digestion; in fact, animals account for more carbon dioxide equivalent (CO₂e) emissions than every country except China, according to a recent McKinsey report. Dealing with billions of animals, dispersed on farms small and large all over the world is, to put it mildly, complicated. Certain kinds of feed additives, for example, can reduce the formation of methane, cow by cow—but is expensive ($50 per tCO₂e and up). This add costs to farmers, without any economic benefits to them, and makes food more expensive. That’s a tough sell.

On the other hand, the energy industry accounts for 20 to 25 percent of methane emissions; its operations are fairly consolidated, and there are significant resources and expertise at hand. Plus, in many cases, there are genuine economic opportunities. For example, plugging methane leaks means less gas gets lost. Large volumes of methane emissions that are now treated as a waste could be recovered and sold as natural gas—something that is not always economic to do, but could be as gas prices rise or conditions change. According to the International Energy Agency (IEA), the industry flares approximately 90 Mt of methane per year, losing $12 billion to $19 billion in value. Over time, too, normal maintenance and upgrading strategies can also reduce emissions, for example, by replacing pumps with instrument air systems. There are many different ways to prevent losses in upstream production, including leak detection and repair, equipment electrification, and vapor recovery units.

No alt text provided for this image

Source: McKinsey.com

In the short term, meaning over the next decade, the IEA says that these and other changes could reduce emissions 40 percent (at 2019 gas prices), while more than paying for themselves. In effect, there is low-hanging fruit out there. The full potential, according to McKinsey, is 75 percent fewer emissions by 2050, but to get there, things get more expensive, somewhere in the range of $20 per tCO₂e.

Naturally, oil and gas players are not eager to embrace added costs, and these will eventually be passed on to consumers. But the industry is looking at a future that is carbon-constrained in one way or another, either through a price on carbon, or regulation, or both. It might well be that addressing methane emissions provides a way to decarbonize its operations at reasonable cost. And while there is little brand equity to natural gas at the moment—no one shops for it by name—it is possible that in decades to come, companies that can show they are producing low- or zero-carbon gas might be able to command a price premium.

Much of the oil and gas industry doesn’t disagree with this analysis. The International Group of Liquefied Natural Gas Importers, a trade group, has made the case that “abating greenhouse gas emissions (from wellhead to terminal outlet), in particular fugitive methane emissions,” is important. On the oil side, the American Petroleum Institute, as part of its climate action plan, has called for the development of methane detection technologies, and reducing flaring to zero: “We support cost-effective policies and direct regulation that achieve methane emission reductions from new and existing sources across the supply chain.” And the Oil and Gas Climate Initiative, whose companies account for almost 30 percent of global production, are also on board, calling the reduction of methane emissions to near zero “a top priority.” Back in 2017, the Houston Chronicle, the home paper of the Texas oil and gas industry, argued for better practices: “If Texas wants the world to buy our LNG exports, a sign of environmental good faith would go a long way.” And in fact there has been progress: the OGCI estimates that methane emissions are have declined 33 percent from 2017-20.

On the whole, then, this looks like one area of climate policy where there is broad consensus. Methane matters. According to one science paper, dealing with it “could slow the global-mean rate of near-term decadal warming by around 30 percent.” Just the oil-and-gas industry’s share, then, could make a measurable difference. I am not saying getting methane emissions way down will be easy, but the industry knows what to do and how to do it. It is in its interest, and that of the planet, to do so.

------------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally ran on LinkedIn on October 21, 2021.

Leaders across Houston shared their thoughts on the Future of Global Energy today. Image courtesy of HETI.

Energy leaders across Houston provide a global perspective​

IT TAKES A VILLAGE

Just over one month ago, a major Houston drilling executive challenged the energy industry to embrace partnering to attain the sustainability goals of the energy transition. The sentiment echoed across multiple sessions held throughout Houston and broadcast virtually at today’s Future of Global Energy Conference presented by Chevron.

Read on for key statements made by leaders across the city at Day 2 of this three-part event, hosted by the Greater Houston Partnership, Houston Energy Transition Initiative (HETI), and Center for Houston’s Future.

SESSION 1: COMMUNITY ENGAGEMENT AND EQUITY

“My work over the past 20 years… has allowed me to connect with communities that live in the shadows of large industrial facilities,” says John Hall, CEO of Houston Advanced Research Center (HARC).

“If energy companies, and the rest of the business sector, and government could come together… we have the opportunity, if we work innovatively and creatively to mesh all of those resources together, through a process of deliberate and thoughtful conversations, and engagement with some of the most disadvantaged communities in this state–we have the opportunity, without having to spend extra money, but through cooperative collaboration and solution building… not only achieve corporate goals, but uplift these communities.“

SESSION 2: BUILDING A WORKFORCE FOR THE TRANSITION

“We have to educate younger people that are coming into the workforce where the jobs are, and where the where the jobs are going to be in the next 10-15 years,” declares Tim Tarpley, president of the Energy Workforce & Technology Council. “We do not have enough young people coming into the energy space to [back]fill the folks that are retiring. And that’s a big problem.”

Tarpley continues, “Younger people don’t always feel like there’s going to be opportunities in this industry going forward. That couldn’t be further from the truth. There is tremendous opportunity.”

SESSION 3: INNOVATION & TECHNOLOGY FOR THE ENERGY TRANSITION

“Being able to take technology from lab development to commercialization, crossing that barrier of risk–we have to do that as an industry and as a society,” explains Billy Bardin, Global Climate Transition Director, Dow Inc.

“Houston has a leading role to play in that, given the deployed assets, the expertise, the workforce development plans we heard about in the previous session with our academic partners. This portfolio of capabilities is ultimately required. At Dow, we talk about a decarbonizing growth strategy – where we want to decarbonize our assets but at the same time make safer, more sustainable materials that our customers need.”

------

“Partnerships are critical with earlier stage startups, but also partnerships on deployment are critical. When thinking about scaling up, and the challenges of scaling up, it’s really hard to find one company that can do it all,” says Jim Gable, President, Chevron Technology Ventures. “Every solution has to fit within the rest of the system. It’s not just one breakthrough that’s going to resolve the world’s challenges related to decarbonization or lowering our carbon footprint.”

SESSION 4: FUNDING THE ENERGY TRANSITION

“One of the vexing issues is the demand side of the equation,” posits Kassia Yanosek, Partner, McKinsey & Company. “We are in a different world today, where we have to think, ‘How do we scale new molecules?’ Green LNG, hydrogen and ammonia made from green hydrogen or blue hydrogen–we don’t have a deep market for those types of molecules. The challenge we are facing today, in addition to the supports on the supply side, is creating a market and demand for these molecules that cost more but also have a greener content.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Renewables to play greater role in powering data centers, JLL says

Data analysis

Renewable energy is evolving as the primary energy source for large data centers, according to a new report.

The 2026 Global Data Center Outlook from commercial real estate services giant JLL points out that the pivot toward big data centers being powered by renewable energy stems from rising electricity costs and tightening carbon reduction requirements. In the data center sector, renewable energy, such as solar and wind power, is expected to outcompete fossil fuels on cost, the report says.

The JLL forecast carries implications for the Houston area’s tech and renewable energy sectors.

As of December, Texas was home to 413 data centers, second only to Virginia at 665, according to Visual Capitalist. Dozens more data centers are in the pipeline, with many of the new facilities slated for the Houston, Austin, Dallas-Fort Worth and San Antonio areas.

Amid Texas’ data center boom, several Houston companies are making inroads in the renewable energy market for data centers. For example, Houston-based low-carbon energy supplier ENGIE North America agreed last May to supply up to 300 megawatts of wind power for a Cipher Mining data center in West Texas.

The JLL report says power, not location or cost, will become the primary factor in selecting sites for data centers due to multi-year waits for grid connections.

“Energy infrastructure has emerged as the critical bottleneck constraining expansion [of data centers],” the report says. “Grid limitations now threaten to curtail growth trajectories, making behind-the-meter generation and integrated battery storage solutions essential pathways for sustainable scaling.”

Behind-the-meter generation refers to onsite energy systems such as microgrids, solar panels and solar battery storage. The report predicts global solar capacity will expand by roughly 100 gigawatts between 2026 and 2030 to more than 10,000 gigawatts.

“Solar will account for nearly half of global renewable energy capacity in 2026, and despite its intermittent properties, solar will remain a key source of sustainable energy for the data center sector for years to come,” the report says.

Thanks to cost and sustainability benefits, solar-plus-storage will become a key element of energy strategies for data centers by 2030, according to the report.

“While some of this energy harvesting will be colocated with data center facilities, much of the energy infrastructure will be installed offsite,” the report says.

Other findings of the report include:

  • AI could represent half of data center workloads by 2030, up from a quarter in 2025.
  • The current five-year “supercycle” of data center infrastructure development may result in global investments of up to $3 trillion by 2030.
  • Nearly 100 gigawatts worth of new data centers will be added between 2026 and 2030, doubling global capacity.

“We’re witnessing the most significant transformation in data center infrastructure since the original cloud migration,” says Matt Landek, who leads JLL’s data center division. “The sheer scale of demand is extraordinary.”

Hyperscalers, which operate massive data centers, are allocating $1 trillion for data center spending between 2024 and 2026, Landek notes, “while supply constraints and four-year grid connection delays are creating a perfect storm that’s fundamentally reshaping how we approach development, energy sourcing, and market strategy.”

Houston-based NRG announces new CEO and succession plan

new leader

Houston-based NRG Energy Inc. announced Jan. 7 that it has appointed Robert J. Gaudette as president and CEO. Gaudette took over as president effective Jan. 7 and will assume the role of CEO April 30, coinciding with the company's next stockholder meeting.

Gaudette, who previously served as executive vice president and president of NRG Business and Wholesale Operations, will succeed Lawrence Coben in the leadership roles. Coben will remain an advisor to NRG through the end of the year and will also continue to serve as board chair until April 30. Antonio Carrillo, lead independent director at NRG, will take over as board chair.

"Rob has played a central role in strengthening NRG’s position as a leader in our industry through strategic growth, operational excellence, and customer-focused innovation," Coben said in the news release. "He is a strong, decisive leader with extensive knowledge of our business, markets, and customers. The Board and I are confident that Rob is the right person to lead NRG forward and take the NRG rocket ship to new heights. I can’t wait to see what comes next.”

Gaudette has been with NRG since 2001. He has served as EVP of NRG Business and Market Operations since 2022 and president of NRG Business and Market Operations since 2024. In these roles, he led NRG’s power generation and oversaw its portfolio of commercial and industrial products and services as well as its market operations, according to the company.

He has held various executive leadership roles at NRG. He earned his bachelor's degree in chemistry from The College of William and Mary and an MBA at Rice University, where he was a Jones Scholar. He also served four years as an Army officer.

“It is an honor to be appointed NRG’s next CEO at this transformative time for the energy sector and our company,” Gaudette said in the release. “With NRG’s electricity, natural gas and smart home portfolio, we are ideally positioned to meet America’s evolving energy needs. I am grateful to Larry and all my NRG colleagues, both past and present, who built our great company and positioned us for the future. I look forward to leading our incredible team to deliver affordable, resilient power for the customers and communities we serve, while creating substantial value for our shareholders.”

In addition to its traditional power generation and electricity businesses, NRG has been working to develop a 1-gigawatt virtual power plant by connecting thousands of decentralized energy sources by 2035 in an effort to meet Texas’ surging energy demands.

The company announced partnerships last year with two California-based companies to bolster home battery use and grow its network. NRG has said the VPP could provide energy to 200,000 homes during peak demand.

10+ must-attend Houston energy events happening in Q1 2026

Mark Your Calendar

Editor's note: With the new year comes a new slate of must-attend events for those in the Houston energy sector. We've rounded up a host of events to put on your calendar for Q1, including some that you can attend this month. Plus, other premier annual events will return in February and March 2026 and are currently offering early-bird, discounted registration. Book now.

Jan. 7-8 — AAPG Subsurface Energy to Power Workshop

This two-day AAPG workshop explores the expanding role of natural gas, geothermal, hydrogen, lithium, and uranium in accelerating electricity capacity. Participants will examine innovative solutions designed to reduce reliance on long-distance transmission lines, pipelines, and other costly infrastructure. Throughout the workshop, attendees will gain insight into both the technical deployment of subsurface resources and the land, legal, and permitting factors that influence project development.

This event begins Jan. 7 at Norris Conference Center at CityCentre. Register here.

Jan. 19-22 — PPIM 2026

The 38th international Pipeline Pigging & Integrity Management Conference and Exhibition takes place over four days at the George R. Brown Convention Center and the Hilton Americas. This industry forum is devoted exclusively to pigging for pipeline maintenance and inspection, engineering assessment, repair, risk management, and NDE. Two days of courses will take place Jan. 19-20, followed by the conference on Jan. 21-22, and the exhibition running Jan. 20-22. Register here.

Jan. 22 — MicroSeismic - Romancing Energy Forum

This forum will feature raw, unfiltered stories from the pioneers who changed the trajectory of American Shale. Attendees will gain insights into the playbooks, decisions, data, and lessons learned behind the biggest discoveries and engineering triumphs in modern energy. Keynote speakers include Tom and Diane Gates of Gates Ranch.

This event begins at 8 am on Jan. 22 at Norris Conference Center at CityCentre. Register here.

Jan. 22 — Houston Downton Luncheon: Beyond the Barrel: Pricing, Transition, and Geopolitics in 2026

Women's Energy Network Houston Chapter hosts this January lunch and learn featuring guest speaker Ha Nguyen with S&P Global Energy. Nguyen will discuss the global energy outlook for 2026, with a focus on strategic drivers, such as decarbonization and EV adoption, and a look at Houston's crucial role in the future of the U.S. market.

This event begins at 11:30 am on Jan. 22 at The Houston Club. Register here.

Feb. 18-20 — NAPE Summit Week 2026

NAPE is the energy industry’s marketplace for the buying, selling, and trading of prospects and producing properties. NAPE brings together all industry disciplines and companies of all sizes, and in 2026 it will introduce three new hubs — offshore, data centers, and critical minerals — for more insights, access, and networking opportunities. The event includes a summit, exhibition, and more.

This event begins Feb. 18 at George R. Brown Convention Center. Register here.

Feb. 24-26 — 2026 Energy HPC & AI Conference

The 2026 Energy HPC & AI Conference marks the 19th year for the Ken Kennedy Institute to convene experts from the energy industry, academia, and national labs to share breakthroughs for HPC and AI technologies. The conference returns to Houston with engaging speaker sessions, a technical talk program, networking receptions, add-on workshops, and more.

This event begins Feb. 24 at Rice University's BRC. Register here.

Feb. 26 — February Transition on Tap

Mix and mingle at Greentown Labs' first Transition on Tap event of the year. Meet the accelerator's newest startup members, who are working on innovations ranging from methane capture to emissions-free manufacturing processes to carbon management.

This event begins at 5:30 pm on Feb. 26 at Greentown Labs Houston. Register here.

March 2-4 — The Future Energy Summit

The Future Energy Summit is a premier global event bringing together visionaries, industry leaders, and energy experts to shape the future of energy. The second edition of the conference will provide a platform for groundbreaking discussions, cutting-edge technologies, and transformative strategies that will accelerate the energy transition.

This event begins March 2. Register here.

March 10-12 — World Hydrogen & Carbon Americas

S&P Global Energy brings together two leading events — Carbon Management Americas and World Hydrogen North America — to form a new must-attend event for those in the hydrogen and carbon industries. More than 800 senior leaders from across the energy value chain will attend this event featuring immersive roundtable discussions, hands-on training, real-world case studies, and unparalleled networking opportunities.

This event begins March 10 at Marriott Marquis Houston. Register here.

March 23-27 — CERAWeek 2026

CERAWeek 2026 will focus on "Convergence and Competition: Energy, Technology and Geopolitics." The industry's foremost thought leaders will convene in Houston to cultivate relationships and exchange transformative ideas during the annual event. Through the lens of 16 dynamic themes, CERAWeek 2026 will explore breakthroughs, cross-industry connections, and powerful partnerships that are accelerating the transformation of the global energy system.

This event begins March 23. Register here.