Apply now

Houston organization calls for startup submissions to pitch at inaugural climatetech week

The event "will showcase energy tech innovations to shift towards a more sustainable, reliable and lower carbon future across interactive panels, inspiring keynotes and over 50 dynamic venture pitches." Photo via Rice.edu

Calling all energy tech startups — you don't want to miss the opportunity to pitch at the inaugural Energy and Climate Startup Week in Houston.

Applications are open now for Rice Alliance for Technology and Entrepreneurship's Energy Tech Venture Forum, which will take place on September 12 as a part of the first Energy and Climate Startup Week in Houston that is taking place September 9 to 13. While ETVF has been hosted by Rice every year for over 20 years, this will be the first time startups will be pitching as a part of the bigger, citywide event.

The event "will showcase energy tech innovations to shift towards a more sustainable, reliable and lower carbon future across interactive panels, inspiring keynotes and over 50 dynamic venture pitches," according to Rice Alliance.

Ninety selected startups will get one-on-one time with the 75 investors who attend the event — each company will have around four to 10 meetings set up for them — and then 40 companies will continue on to pitch to the attendees of the event. Additionally, the Class 4 of the Rice Alliance Clean Energy Accelerator, which was recently announced on EnergyCapital, will also be featured for 10 Demo Day pitches.

Startup founders have until July 12 to apply online.

In addition to the pitches, the September 12 event will feature keynote addresses, panels, and investor-only office hours.

Learn more about the event from last year:

Trending News

A View From HETI

Rice University scientists' “recharge-to-recycle” reactor has major implications for the electric vehicle sector. Photo courtesy Jorge Vidal/Rice University.

Engineers at Rice University have developed a cleaner, innovative process to turn end-of-life lithium-ion battery waste into new lithium feedstock.

The findings, recently published in the journal Joule, demonstrate how the team’s new “recharge-to-recycle” reactor recharges the battery’s waste cathode materials to coax out lithium ions into water. The team was then able to form high-purity lithium hydroxide, which was clean enough to feed directly back into battery manufacturing.

The study has major implications for the electric vehicle sector, which significantly contributes to the waste stream from end-of-life battery packs. Additionally, lithium tends to be expensive to mine and refine, and current recycling methods are energy- and chemical-intensive.

“Directly producing high-purity lithium hydroxide shortens the path back into new batteries,” Haotian Wang, associate professor of chemical and biomolecular engineering, co-corresponding author of the study and co-founder of Solidec, said in a news release. “That means fewer processing steps, lower waste and a more resilient supply chain.”

Sibani Lisa Biswal, chair of Rice’s Department of Chemical and Biomolecular Engineering and the William M. McCardell Professor in Chemical Engineering, also served as co-corresponding author on the study.

“We asked a basic question: If charging a battery pulls lithium out of a cathode, why not use that same reaction to recycle?” Biswal added in the release. “By pairing that chemistry with a compact electrochemical reactor, we can separate lithium cleanly and produce the exact salt manufacturers want.”

The new process also showed scalability, according to Rice. The engineers scaled the device to 20 square centimeters, then ran a 1,000-hour stability test and processed 57 grams of industrial black mass supplied by industry partner Houston-based TotalEnergies. The results produced lithium hydroxide that was more than 99 percent pure. It also maintained an average lithium recovery rate of nearly 90 percent over the 1,000-hour test, showing its durability. The process also worked across multiple battery chemistries, including lithium iron phosphate, lithium manganese oxide and nickel-manganese-cobalt variants.

Looking ahead, the team plans to scale the process and consider ways it can sustain high efficiency for greater lithium hydroxide concentrations.

“We’ve made lithium extraction cleaner and simpler,” Biswal added in the release. “Now we see the next bottleneck clearly. Tackle concentration, and you unlock even better sustainability.

Trending News