guest column

Houston expert looks at wholesale pricing trends occurring this summer

PJ Popovic of Houston-based Rhythm Energy looks back on summer heatwave trends. Photo via Shutterstock

This summer’s heatwave had a lot of Texans feeling uncomfortable, and it was not just the sweltering triple-digit temperatures, and even higher heat indexes, that had us sweating. With much of the state hitting over 100 degrees for weeks, air conditioners were working overtime to keep homes and businesses cool. That added load, coupled with general demand growth, put a heavy burden on the Texas power grid — and that puts the state in a precarious position.

We all remember Uri in February 2021, when an inch-thick coat of ice hampered power companies' ability to generate power, leading to widespread and lasting power outages across the state. The recent heat wave, however, was different. This past summer, the concern for Texas and ERCOT (the Electric Reliability Council of Texas) was not whether generation would fail, but whether generation capacity could keep pace with peak demand. And what would be the wholesale electricity price to ensure that it did.

The generation mix

As robust as our electricity grid is, on any given day the balance between power supply and demand remains fairly tenuous. In its summer Seasonal Assessment of Resource Adequacy, ERCOT projected its power-generation capacity at 97,000 MW. However, that daily capacity number can be misleading.

As Texas’ generation mix leans to a greater degree toward renewable power and we retire more coal and natural gas fired generation plants, our generation output becomes less predictable. Operators can practically flip a switch to turn on fossil fuel generation plants and quickly dispatch its power. Renewable generation, on the other hand, is intermittent and its output by no means guaranteed. While the state’s current combined wind and solar generation can potentially deliver up to 30,000 megawatts, if the right weather conditions are not there, neither is the power.

Meanwhile, the demand for power in Texas has increased dramatically. In recent years, we have seen significant population growth, electrification as well as new business expansion throughout the state. Some of the businesses moving here draw huge loads of power from the grid — think about the companies mining digital currency or Elon Musk’s SpaceX facilities in Central Texas, just to name a few. A considerable demand curve increase occurring simultaneously with the move to more renewable generation challenges the delicate balance of the grid.

Trends and lessons learned from the summer’s wholesale electricity pricing

ERCOT manages the flow of electricity across the state of Texas. It also oversees the wholesale bulk power market whereby generators are paid primarily for the electricity they supply to the grid. To incentivize the development of future generating capacity, ERCOT employs scarcity pricing — that means that commodity prices escalate dramatically as supply becomes constrained.

This summer, ERCOT faced unprecedented demand with daily electricity usage frequently nearing generation capacity limits. Consequently, electricity prices were notably volatile, often skyrocketing exponentially.

ERCOT employs a complex series of pricing mechanisms to establish its real-time price for each megawatt. A deep dive analysis (INSERT LINK) found that the Locational Margin Prices, or LMP, were significantly higher than previous years, even when reserve generation capacities were robust and fuel prices were similar to or lower than prior years.

So, what contributed to the higher than usual prices? Certainly, changes to ERCOT operations, market design tweaks, and transmission constraints contributed, but market prices were most driven by generators’ offer pricing curves.

Now, more than four months removed from the start of the heat wave in June, we can see how different various technologies priced their offerings. The data suggests that a segment of resources, notably battery storage, set their offer prices near or at the system-wide offer price cap. Given the anticipated rise of batteries as the primary dispatchable resource within the grid in coming years, this pricing behavior warrants closer scrutiny.

Offer pricing curves appear to have created a semblance of shortage pricing, evident in the heightened LMPs, even when reserve capacities were not especially scarce. This would suggest that a significant portion of the dispatchable capacity integrated into ERCOT was priced at levels typically seen only in grid emergency conditions

Key questions

Why are the recently added dispatchable resources garnering such high offer prices? Are there operational hurdles in integrating and dispatching batteries, challenges in market design, inherent limitations of batteries on the grid, or other factors contributing to these high offer prices from battery resources? Given that batteries are poised to play a central role in the transition to renewable energy sources, answering these questions will be key.

The current pricing trends in the ERCOT market, if sustained, could lead to increased electricity rates and/or increased price volatility for end-users, underscoring the importance of monitoring and addressing these market dynamics.

------

PJ Popovic is the CEO of Houston-based Rhythm Energy.

Trending News

A View From HETI

HYCO1 has signed an agreement to convert 1 million tons per year of raw CO2 into industrial-grade syngas at a new carbon capture project in Malaysia. Photo via Getty Images.

Houston-based CO2 utilization company HYCO1 has signed a memorandum of understanding with Malaysia LNG Sdn. Bhd., a subsidiary of Petronas, for a carbon capture project in Malaysia, which includes potential utilization and conversion of 1 million tons of carbon dioxide per year.

The project will be located in Bintulu in Sarawak, Malaysia, where Malaysia LNG is based, according to a news release. Malaysia LNG will supply HYCO1 with an initial 1 million tons per year of raw CO2 for 20 years starting no later than 2030. The CCU plant is expected to be completed by 2029.

"This is very exciting for all stakeholders, including HYCO1, MLNG, and Petronas, and will benefit all Malaysians," HYCO1 CEO Gregory Carr said in the release. "We approached Petronas and MLNG in the hopes of helping them solve their decarbonization needs, and we feel honored to collaborate with MLNG to meet their Net Zero Carbon Emissions by 2050.”

The project will convert CO2 into industrial-grade syngas (a versatile mixture of carbon monoxide and hydrogen) using HYCO1’s proprietary CUBE Technology. According to the company, its CUBE technology converts nearly 100 percent of CO2 feed at commercial scale.

“Our revolutionary process and catalyst are game changers in decarbonization because not only do we prevent CO2 from being emitted into the atmosphere, but we transform it into highly valuable and usable downstream products,” Carr added in the release.

As part of the MoU, the companies will conduct a feasibility study evaluating design alternatives to produce low-carbon syngas.

The companies say the project is expected to “become one of the largest CO2 utilization projects in history.”

HYCO1 also recently announced that it is providing syngas technology to UBE Corp.'s new EV electrolyte plant in New Orleans. Read more here.

Trending News