new deal

Oxy's sustainability subsidiary announces DAC agreement with commodities group

Here's 1PoinFive's newest customer on its Texas CCUS project. Photo via 1pointfive.com

Oxy's carbon capture, utilization and sequestration company announced it's latest carbon dioxide removal credits purchasing agreement with a global commodities group.

Trafigura has agreed to purchase carbon dioxide removal credits to be produced from 1PointFive’s first industrial-scale Direct Air Capture facility, Stratos, that is being built in Texas.

Stratos, which is expected to be the largest facility of its kind in the world, will be configured to be able to capture up to 500,000 metric tons of CO2 annually when fully operational. The captured CO2 underlying Trafigura’s removal credits plan to be stored through durable subsurface saline sequestration.

The advance purchase of DAC credits from 1PointFive will support early-stage technologies to enable high-quality carbon removal credits. The deal can lead to broader adoption of 1PointFive’s CDR credits to help hard-to-abate industries address their emissions.

“We are delighted to collaborate with 1PointFive as we expand our global customer offering for hard-to-abate sectors,” Hannah Hauman, global head of Carbon Trading for Trafigura, says in a news release. “Supporting the development of large-scale removals projects demonstrates our commitment to advancing carbon sequestration technologies, underpinning demand today to enable the scaling of production for tomorrow.”

1PointFive is working to help curb global temperature rise to 1.5°C by 2050 through the deployment of decarbonization solutions, which includes Carbon Engineering's Direct Air Capture and AIR TO FUELS solutions alongside geologic sequestration hubs.

Last November, Canada’s TD Securities investment bank agreed to buy 27,500 metric tons of carbon removal credits from 1PointFive's Stratos, news that followed Amazon's commitment to purchase 250,000 metric tons of carbon removal credits. BlackRock has agreed to pump $550 million into the project, the company reported last fall.

Trafigura continues to invest in renewable energy projects and technologies to facilitate the transition to a low-carbon economy. The company works through joint ventures including H2Energy Europe and Nala Renewables. The deal is Trafigura’s first transaction towards meeting its 2023 goal, as is its commitment as a Founding Member of the First Movers Coalition to purchase at least 50,000 tons of durable and scalable net carbon dioxide removal credits generated through advanced CDR technologies.

Trending News

A View From HETI

A team at the University of Houston is changing the game for sodium-ion batteries. Photo via Getty Images

A research lab at the University of Houston has developed a new type of material for sodium-ion batteries that could make them more efficient and boost their energy performance.

Led by Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, the Canepa Research Laboratory is working on a new material called sodium vanadium phosphate, which improves sodium-ion battery performance by increasing the energy density. Energy density is the amount of energy stored per kilogram, and the new material can do so by more than 15 percent. With a higher energy density of 458 watt-hours per kilogram — compared to the 396 watt-hours per kilogram in older sodium-ion batteries — this material brings sodium technology closer to competing with lithium-ion batteries, according to the researchers.

The Canepa Lab used theoretical expertise and computational methods to discover new materials and molecules to help advance clean energy technologies. The team at UH worked with the research groups headed by French researchers Christian Masquelier and Laurence Croguennec from the Laboratoire de Reáctivité et de Chimie des Solides, which is a CNRS laboratory part of the Université de Picardie Jules Verne, in Amiens France, and the Institut de Chimie de la Matière Condensée de Bordeaux, Université de Bordeaux, Bordeaux, France for the experimental work on the project.

The researchers then created a battery prototype using the new materia sodium vanadium phosphate, which demonstrated energy storage improvements. The material is part of a group called “Na superionic conductors” or NaSICONs, which is made to let sodium ions move in and out of the battery during charging and discharging.

“The continuous voltage change is a key feature,” Canepa says in a news release. “It means the battery can perform more efficiently without compromising the electrode stability. That’s a game-changer for sodium-ion technology.”

The synthesis method used to create sodium vanadium phosphate may be applied to other materials with similar chemistries, which could create new opportunities for advanced energy storage. A paper of this work was published in the journal Nature Materials.

"Our goal is to find clean, sustainable solutions for energy storage," Canepa adds. "This material shows that sodium-ion batteries can meet the high-energy demands of modern technology while being cost-effective and environmentally friendly."

Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, is leading a research project that can change the effectiveness of sodium-ion batteries. Photo courtesy of UH

Trending News