new deal

Oxy's sustainability subsidiary announces DAC agreement with commodities group

Here's 1PoinFive's newest customer on its Texas CCUS project. Photo via 1pointfive.com

Oxy's carbon capture, utilization and sequestration company announced it's latest carbon dioxide removal credits purchasing agreement with a global commodities group.

Trafigura has agreed to purchase carbon dioxide removal credits to be produced from 1PointFive’s first industrial-scale Direct Air Capture facility, Stratos, that is being built in Texas.

Stratos, which is expected to be the largest facility of its kind in the world, will be configured to be able to capture up to 500,000 metric tons of CO2 annually when fully operational. The captured CO2 underlying Trafigura’s removal credits plan to be stored through durable subsurface saline sequestration.

The advance purchase of DAC credits from 1PointFive will support early-stage technologies to enable high-quality carbon removal credits. The deal can lead to broader adoption of 1PointFive’s CDR credits to help hard-to-abate industries address their emissions.

“We are delighted to collaborate with 1PointFive as we expand our global customer offering for hard-to-abate sectors,” Hannah Hauman, global head of Carbon Trading for Trafigura, says in a news release. “Supporting the development of large-scale removals projects demonstrates our commitment to advancing carbon sequestration technologies, underpinning demand today to enable the scaling of production for tomorrow.”

1PointFive is working to help curb global temperature rise to 1.5°C by 2050 through the deployment of decarbonization solutions, which includes Carbon Engineering's Direct Air Capture and AIR TO FUELS solutions alongside geologic sequestration hubs.

Last November, Canada’s TD Securities investment bank agreed to buy 27,500 metric tons of carbon removal credits from 1PointFive's Stratos, news that followed Amazon's commitment to purchase 250,000 metric tons of carbon removal credits. BlackRock has agreed to pump $550 million into the project, the company reported last fall.

Trafigura continues to invest in renewable energy projects and technologies to facilitate the transition to a low-carbon economy. The company works through joint ventures including H2Energy Europe and Nala Renewables. The deal is Trafigura’s first transaction towards meeting its 2023 goal, as is its commitment as a Founding Member of the First Movers Coalition to purchase at least 50,000 tons of durable and scalable net carbon dioxide removal credits generated through advanced CDR technologies.

Trending News

A View From HETI

Rice University scientists' “recharge-to-recycle” reactor has major implications for the electric vehicle sector. Photo courtesy Jorge Vidal/Rice University.

Engineers at Rice University have developed a cleaner, innovative process to turn end-of-life lithium-ion battery waste into new lithium feedstock.

The findings, recently published in the journal Joule, demonstrate how the team’s new “recharge-to-recycle” reactor recharges the battery’s waste cathode materials to coax out lithium ions into water. The team was then able to form high-purity lithium hydroxide, which was clean enough to feed directly back into battery manufacturing.

The study has major implications for the electric vehicle sector, which significantly contributes to the waste stream from end-of-life battery packs. Additionally, lithium tends to be expensive to mine and refine, and current recycling methods are energy- and chemical-intensive.

“Directly producing high-purity lithium hydroxide shortens the path back into new batteries,” Haotian Wang, associate professor of chemical and biomolecular engineering, co-corresponding author of the study and co-founder of Solidec, said in a news release. “That means fewer processing steps, lower waste and a more resilient supply chain.”

Sibani Lisa Biswal, chair of Rice’s Department of Chemical and Biomolecular Engineering and the William M. McCardell Professor in Chemical Engineering, also served as co-corresponding author on the study.

“We asked a basic question: If charging a battery pulls lithium out of a cathode, why not use that same reaction to recycle?” Biswal added in the release. “By pairing that chemistry with a compact electrochemical reactor, we can separate lithium cleanly and produce the exact salt manufacturers want.”

The new process also showed scalability, according to Rice. The engineers scaled the device to 20 square centimeters, then ran a 1,000-hour stability test and processed 57 grams of industrial black mass supplied by industry partner Houston-based TotalEnergies. The results produced lithium hydroxide that was more than 99 percent pure. It also maintained an average lithium recovery rate of nearly 90 percent over the 1,000-hour test, showing its durability. The process also worked across multiple battery chemistries, including lithium iron phosphate, lithium manganese oxide and nickel-manganese-cobalt variants.

Looking ahead, the team plans to scale the process and consider ways it can sustain high efficiency for greater lithium hydroxide concentrations.

“We’ve made lithium extraction cleaner and simpler,” Biswal added in the release. “Now we see the next bottleneck clearly. Tackle concentration, and you unlock even better sustainability.

Trending News