making moves

Oxy's CCUS subsidiary inks massive carbon removal credit deal

1PointFive, Oxy's CCUS subsidiary, has secured a deal that's being billed as among the largest carbon removal credit deals. Photo via oxy.com

Canada’s TD Securities investment bank has agreed to buy 27,500 metric tons of carbon removal credits from the 1PointFive subsidiary of Houston-based energy company Occidental Petroleum.

The four-year deal involves 1PointFive’s first direct air capture (DAC) plant, called Stratos, which is under construction in the Midland-Odessa area. The Occidental Petroleum subsidiary specializes in carbon capture, utilization, and sequestration (CCUS). Under this agreement, the captured CO2 underlying the carbon credits will be stored through geologic sequestration.

Financial terms of the deal weren’t disclosed.

Stratos will be capable of capturing and removing up to 500,000 metric tons of CO2 from the atmosphere per year, 1PointFive says.

Michael Avery, president and general manager of 1PointFive, says in a November 1 news release that TD Securities’ purchase of carbon removal credits demonstrates how DAC “can become a vital tool in an organization’s sustainability strategy and help further net-zero goals.”

“Carbon removal credits from [DAC] will be measurable, transparent, and durable, with the goal of providing a solution for organizations to address their emissions,” Avery adds.

The 1PointFive deal is part of TD Securities’ broader decarbonization initiative.

“As the need to move from climate commitments to action intensifies, corporations across all sectors are looking for tangible ways to achieve their net-zero goals,” says Amy West, global head of ESG solutions at TD Securities.

In September, 1PointFive announced a 10-year deal with e-commerce giant Amazon to purchase 250,000 metric tons of carbon dioxide removal credits via Stratos.

Trending News

A View From HETI

Researchers from Rice University say their recent findings could revolutionize power grids, making energy transmission more efficient. Image via Getty Images.

A new study from researchers at Rice University, published in Nature Communications, could lead to future advances in superconductors with the potential to transform energy use.

The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials.

A team led by Rice’s Qimiao Si, the Harry C. and Olga K. Wiess Professor of Physics and Astronomy, used quantum Fisher information (QFI), a concept from quantum metrology, to measure how electron interactions evolve under extreme conditions. The research team also included Rice’s Yuan Fang, Yiming Wang, Mounica Mahankali and Lei Chen along with Haoyu Hu of the Donostia International Physics Center and Silke Paschen of the Vienna University of Technology. Their work showed that the quantum phenomenon of electron entanglement peaks at a quantum critical point, which is the transition between two states of matter.

“Our findings reveal that strange metals exhibit a unique entanglement pattern, which offers a new lens to understand their exotic behavior,” Si said in a news release. “By leveraging quantum information theory, we are uncovering deep quantum correlations that were previously inaccessible.”

The researchers examined a theoretical framework known as the Kondo lattice, which explains how magnetic moments interact with surrounding electrons. At a critical transition point, these interactions intensify to the extent that the quasiparticles—key to understanding electrical behavior—disappear. Using QFI, the team traced this loss of quasiparticles to the growing entanglement of electron spins, which peaks precisely at the quantum critical point.

In terms of future use, the materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

The team also found that quantum information tools can be applied to other “exotic materials” and quantum technologies.

“By integrating quantum information science with condensed matter physics, we are pivoting in a new direction in materials research,” Si said in the release.

Trending News