clean and green

Houstonian brings natural, sustainable cleaning products to US with potential impact on agriculture industry

What started as a way to bring natural cleaning products in from overseas has turned into a promising application for more sustainable agriculture solutions. Photo via LinkedIn

When Kristy Phillips sought out a more natural cleaning solution, she didn't realize she'd be opting for a more sustainable option too.

Phillips founded Clean Habits and introduced Synbio, a patented cleaning formula that combines a unique blend of prebiotics and probiotics for their signature five-day clean, to the United States.

“Actually, we are a synbiotic, which is a prebiotic and a probiotic fused together,” says Phillips, founder and CEO of Clean Habits. “And that's what gives us the five-day clean, and we also have the longest shelf life — three years — of any probiotic on the market.”

Phillips learned about the European product almost three months before the COVID-19 pandemic. She had heard of probiotics for gut health but had no idea about probiotic cleaning.

“When COVID actually hit, I went back and really started researching the manufacturer who is based in Europe and all of their pre- and probiotic cleaners,” remembers Phillips. “And I just found it to be so interesting that they were using natural probiotics from the dirt, from the soil, from Mother Earth. And they created this entire product line that they have been using for over 15 years. And they had so many clinical trials and hospital studies and university studies that were showing that these probiotic cleaners were working, and they were reducing bacteria, viruses, even viruses in air."

But Phillips soon learned more of the sustainability angle of the product.

“Not only were they in the cleaning spray sector, but they were also already in water purification. They were in agriculture for animal house farming. They were doing a big trial in the subway station in Milan, putting the probiotics through a big HVAC system. And I just thought, there must be something here.”

Phillips was right. After reaching out to the manufacturer, she asked if they had a distributor here in the United States. They didn't.

“Since they didn’t have a distributor here in the U.S., I got the products and tried them out for myself,” says Phillips. “They were chemical-free, non-toxic and eco-friendly and after comparing them side-by-side with the commercial cleaners we all grew up with like the Lysols, bleach, and 409s, I found that the probiotic cleaners not only worked on surface areas to remove bad bacteria and germs, they continued to work for up to five full days at 100 percent.

“The commercial cleaners did kill 99.99 percent of all bacteria and germs, but they only did it for 30 minutes. And then the bacteria and germs start to grow back. And I am like, you know, nobody tells you that in their marketing. So that is what started my journey on the probiotics and creating a line to bring to the market here in the United States.”

Moving forward, Phillips’ vision for Clean Habits will extend beyond just traditional cleaning products. She sees that she can also have an impact on the industrial and commercial side of things.

“Right now, we are doing testing in agriculture, and this is something that our manufacturers in Europe have already done and they have been extremely successful with it,” says Phillips. “The goal is to see if we could reduce the use of pesticides in farming and replace it with just misting and spraying with the probiotics.

“We already know that by incorporating the probiotics throughout water systems, that we can actually clean the water and take it back to 100 percent natural water or pure water. We can get rid of E. coli, MRSA, staph. And so, we are going to start working with the state of Texas and into animal house cleaning and farming and cleaning their water.”

Additionally, Clean Habits already has research that proves that by incorporating the probiotics, they can start eliminating the bird flu, which affected a lot of Texas chickens recently to where over 350,000 of them had to be put down.

“We’re really trying to change the faith there in agriculture,” says Phillips. “I mean, to me, it's amazing because when I first started this, I was just trying to launch some cleaning supplies, which is fantastic, but this product is so much more than a multi-purpose cleaning spray, your floor cleaner, your drain cleaner or your laundry detergent. This goes into cleaning water, which is everyone's basic right to have clean water. And the fact that we can do it by using these probiotics, to me, my little brain can't compute that part of it.

“And then when we really did start looking into the agriculture and how, by incorporating the probiotics into the animal house, the cleaning of the water, and putting it into their housing system, that we can reduce methane gas by 41 percent. That is huge. This can profoundly change and revolutionize industries. And to be a part of that, and I am so excited.”

———

This article originally ran on InnovationMap.

Trending News

A View From HETI

A team at the University of Houston is changing the game for sodium-ion batteries. Photo via Getty Images

A research lab at the University of Houston has developed a new type of material for sodium-ion batteries that could make them more efficient and boost their energy performance.

Led by Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, the Canepa Research Laboratory is working on a new material called sodium vanadium phosphate, which improves sodium-ion battery performance by increasing the energy density. Energy density is the amount of energy stored per kilogram, and the new material can do so by more than 15 percent. With a higher energy density of 458 watt-hours per kilogram — compared to the 396 watt-hours per kilogram in older sodium-ion batteries — this material brings sodium technology closer to competing with lithium-ion batteries, according to the researchers.

The Canepa Lab used theoretical expertise and computational methods to discover new materials and molecules to help advance clean energy technologies. The team at UH worked with the research groups headed by French researchers Christian Masquelier and Laurence Croguennec from the Laboratoire de Reáctivité et de Chimie des Solides, which is a CNRS laboratory part of the Université de Picardie Jules Verne, in Amiens France, and the Institut de Chimie de la Matière Condensée de Bordeaux, Université de Bordeaux, Bordeaux, France for the experimental work on the project.

The researchers then created a battery prototype using the new materia sodium vanadium phosphate, which demonstrated energy storage improvements. The material is part of a group called “Na superionic conductors” or NaSICONs, which is made to let sodium ions move in and out of the battery during charging and discharging.

“The continuous voltage change is a key feature,” Canepa says in a news release. “It means the battery can perform more efficiently without compromising the electrode stability. That’s a game-changer for sodium-ion technology.”

The synthesis method used to create sodium vanadium phosphate may be applied to other materials with similar chemistries, which could create new opportunities for advanced energy storage. A paper of this work was published in the journal Nature Materials.

"Our goal is to find clean, sustainable solutions for energy storage," Canepa adds. "This material shows that sodium-ion batteries can meet the high-energy demands of modern technology while being cost-effective and environmentally friendly."

Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, is leading a research project that can change the effectiveness of sodium-ion batteries. Photo courtesy of UH

Trending News