What started as a way to bring natural cleaning products in from overseas has turned into a promising application for more sustainable agriculture solutions. Photo via LinkedIn

When Kristy Phillips sought out a more natural cleaning solution, she didn't realize she'd be opting for a more sustainable option too.

Phillips founded Clean Habits and introduced Synbio, a patented cleaning formula that combines a unique blend of prebiotics and probiotics for their signature five-day clean, to the United States.

“Actually, we are a synbiotic, which is a prebiotic and a probiotic fused together,” says Phillips, founder and CEO of Clean Habits. “And that's what gives us the five-day clean, and we also have the longest shelf life — three years — of any probiotic on the market.”

Phillips learned about the European product almost three months before the COVID-19 pandemic. She had heard of probiotics for gut health but had no idea about probiotic cleaning.

“When COVID actually hit, I went back and really started researching the manufacturer who is based in Europe and all of their pre- and probiotic cleaners,” remembers Phillips. “And I just found it to be so interesting that they were using natural probiotics from the dirt, from the soil, from Mother Earth. And they created this entire product line that they have been using for over 15 years. And they had so many clinical trials and hospital studies and university studies that were showing that these probiotic cleaners were working, and they were reducing bacteria, viruses, even viruses in air."

But Phillips soon learned more of the sustainability angle of the product.

“Not only were they in the cleaning spray sector, but they were also already in water purification. They were in agriculture for animal house farming. They were doing a big trial in the subway station in Milan, putting the probiotics through a big HVAC system. And I just thought, there must be something here.”

Phillips was right. After reaching out to the manufacturer, she asked if they had a distributor here in the United States. They didn't.

“Since they didn’t have a distributor here in the U.S., I got the products and tried them out for myself,” says Phillips. “They were chemical-free, non-toxic and eco-friendly and after comparing them side-by-side with the commercial cleaners we all grew up with like the Lysols, bleach, and 409s, I found that the probiotic cleaners not only worked on surface areas to remove bad bacteria and germs, they continued to work for up to five full days at 100 percent.

“The commercial cleaners did kill 99.99 percent of all bacteria and germs, but they only did it for 30 minutes. And then the bacteria and germs start to grow back. And I am like, you know, nobody tells you that in their marketing. So that is what started my journey on the probiotics and creating a line to bring to the market here in the United States.”

Moving forward, Phillips’ vision for Clean Habits will extend beyond just traditional cleaning products. She sees that she can also have an impact on the industrial and commercial side of things.

“Right now, we are doing testing in agriculture, and this is something that our manufacturers in Europe have already done and they have been extremely successful with it,” says Phillips. “The goal is to see if we could reduce the use of pesticides in farming and replace it with just misting and spraying with the probiotics.

“We already know that by incorporating the probiotics throughout water systems, that we can actually clean the water and take it back to 100 percent natural water or pure water. We can get rid of E. coli, MRSA, staph. And so, we are going to start working with the state of Texas and into animal house cleaning and farming and cleaning their water.”

Additionally, Clean Habits already has research that proves that by incorporating the probiotics, they can start eliminating the bird flu, which affected a lot of Texas chickens recently to where over 350,000 of them had to be put down.

“We’re really trying to change the faith there in agriculture,” says Phillips. “I mean, to me, it's amazing because when I first started this, I was just trying to launch some cleaning supplies, which is fantastic, but this product is so much more than a multi-purpose cleaning spray, your floor cleaner, your drain cleaner or your laundry detergent. This goes into cleaning water, which is everyone's basic right to have clean water. And the fact that we can do it by using these probiotics, to me, my little brain can't compute that part of it.

“And then when we really did start looking into the agriculture and how, by incorporating the probiotics into the animal house, the cleaning of the water, and putting it into their housing system, that we can reduce methane gas by 41 percent. That is huge. This can profoundly change and revolutionize industries. And to be a part of that, and I am so excited.”

———

This article originally ran on InnovationMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Oxy opens energy-focused innovation center in Midtown Houston

moving in

Houston-based Occidental officially opened its new Oxy Innovation Center with a ribbon cutting at the Ion last month.

The opening reflects Oxy and the Ion's "shared commitment to advancing technology and accelerating a lower-carbon future," according to an announcement from the Ion.

Oxy, which was named a corporate partner of the Ion in 2023, now has nearly 6,500 square feet on the fourth floor of the Ion. Rice University and the Rice Real Estate Company announced the lease of the additional space last year, along with agreements with Fathom Fund and Activate.

At the time, the leases brought the Ion's occupancy up to 90 percent.

Additionally, New York-based Industrious plans to launch its coworking space at the Ion on May 8. The company was tapped as the new operator of the Ion’s 86,000-square-foot coworking space in Midtown in January.

Dallas-based Common Desk previously operated the space, which was expanded by 50 percent in 2023 to 86,000 square feet.

CBRE agreed to acquire Industrious in a deal valued at $400 million earlier this year. Industrious also operates another local coworking space is at 1301 McKinney St.

Industrious will host a launch party celebrating the new location Thursday, May 8. Find more information here.

Oxy Innovation Center. Photo via LinkedIn.


---

This story originally appeared on our sister site, InnovationMap.com.


Houston climatech company signs on to massive carbon capture project in Malaysia

big deal

Houston-based CO2 utilization company HYCO1 has signed a memorandum of understanding with Malaysia LNG Sdn. Bhd., a subsidiary of Petronas, for a carbon capture project in Malaysia, which includes potential utilization and conversion of 1 million tons of carbon dioxide per year.

The project will be located in Bintulu in Sarawak, Malaysia, where Malaysia LNG is based, according to a news release. Malaysia LNG will supply HYCO1 with an initial 1 million tons per year of raw CO2 for 20 years starting no later than 2030. The CCU plant is expected to be completed by 2029.

"This is very exciting for all stakeholders, including HYCO1, MLNG, and Petronas, and will benefit all Malaysians," HYCO1 CEO Gregory Carr said in the release. "We approached Petronas and MLNG in the hopes of helping them solve their decarbonization needs, and we feel honored to collaborate with MLNG to meet their Net Zero Carbon Emissions by 2050.”

The project will convert CO2 into industrial-grade syngas (a versatile mixture of carbon monoxide and hydrogen) using HYCO1’s proprietary CUBE Technology. According to the company, its CUBE technology converts nearly 100 percent of CO2 feed at commercial scale.

“Our revolutionary process and catalyst are game changers in decarbonization because not only do we prevent CO2 from being emitted into the atmosphere, but we transform it into highly valuable and usable downstream products,” Carr added in the release.

As part of the MoU, the companies will conduct a feasibility study evaluating design alternatives to produce low-carbon syngas.

The companies say the project is expected to “become one of the largest CO2 utilization projects in history.”

HYCO1 also recently announced that it is providing syngas technology to UBE Corp.'s new EV electrolyte plant in New Orleans. Read more here.

Tackling methane in the energy transition: Takeaways from Global Methane Hub and HETI

The view from heti

Leaders from across the energy value chain gathered in Houston for a roundtable hosted by the Global Methane Hub (GMH) and the Houston Energy Transition Initiative (HETI). The session underscored the continued progress to reduce methane emissions as the energy industry addresses the dual challenge of producing more energy that the world demands while simultaneously reducing emissions.

The Industry’s Shared Commitment and Challenge

There’s broad recognition across the industry that methane emissions must be tackled with urgency, especially as natural gas demand is projected to grow 3050% by 2050. This growth makes reducing methane leakage more than a sustainability issue—it’s also a matter of global market access and investor confidence.

Solving this issue, however, requires overcoming technical challenges that span infrastructure, data acquisition, measurement precision, and regulatory alignment.

Getting the Data Right: Top-Down vs. Bottom-Up

Accurate methane leak monitoring and quantification is the cornerstone of any effective mitigation strategy. A key point of discussion was the differentiation between top-down and bottom-up measurement approaches.

Top-down methods such as satellite and aerial monitoring offer broad-area coverage and can identify large emission plumes. Technologies such as satellite-based remote sensing (e.g., using high-resolution imagery) or airborne methane surveys (using aircraft equipped with tunable diode laser absorption spectroscopy) are commonly used for wide-area detection. While these methods are efficient for identifying large-scale emission hotspots, their accuracy is lower when it comes to quantifying emissions at the source, detecting smaller, diffuse leaks, and providing continuous monitoring.

In contrast, bottom-up methods focus on direct, on-site detection at the equipment level, providing more granular and precise measurements. Technologies used here include optical gas imaging (OGI) cameras, flame ionization detectors (FID), and infrared sensors, which can directly detect methane at the point of release. These methods are more accurate but can be resource and infrastructure intensive, requiring frequent manual inspections or continuous monitoring installations, which can be costly and technically challenging in certain environments.

The challenge lies in combining both methods: top-down for large-scale monitoring and bottom-up for detailed, accurate measurements. No single technology is perfect or all-inclusive. An integrated approach that uses both datasets will help to create a more comprehensive picture of emissions and improve mitigation efforts.

From Detection to Action: Bridging the Gap

Data collection is just the first step—effective action follows. Operators are increasingly focused on real-time detection and mitigation. However, operational realities present obstacles. For example, real-time leak detection and repair (LDAR) systems—particularly for continuous monitoring—face challenges due to infrastructure limitations. Remote locations like the Permian Basin may lack the stable power sources needed to run continuous monitoring equipment to individual assets.

Policy, Incentives, and Regulatory Alignment

Another critical aspect of the conversation was the need for policy incentives that both promote best practices and accommodate operational constraints. Methane fees, introduced to penalize emissions, have faced widespread resistance due to their design flaws that in many cases actually disincentivize methane emissions reductions. Industry stakeholders are advocating for better alignment between policy frameworks and operational capabilities.

In the United States, the Subpart W rule, for example, mandates methane reporting for certain facilities, but its implementation has raised concerns about the accuracy of some of the new reporting requirements. Many in the industry continue to work with the EPA to update these regulations to ensure implementation meets desired legislative expectations.

The EU’s demand for quantified methane emissions for imported natural gas is another driving force, prompting a shift toward more detailed emissions accounting and better data transparency. Technologies that provide continuous, real-time monitoring and automated reporting will be crucial in meeting these international standards.

Looking Ahead: Innovation and Collaboration

The roundtable highlighted the critical importance of advancing methane detection and mitigation technologies and integrating them into broader emissions reduction strategies. The United States’ 45V tax policy—focused on incentivizing production of low-carbon intensity hydrogen often via reforming of natural gas—illustrates the growing momentum towards science-based accounting and transparent data management. To qualify for 45V incentives, operators can differentiate their lower emissions intensity natural gas by providing foreground data to the EPA that is precise and auditable, essential for the industry to meet both environmental and regulatory expectations. Ultimately, the success of methane reduction strategies depends on collaboration between the energy industry, technology providers, and regulators.

The roundtable underscored that while significant progress has been made in addressing methane emissions, technical, regulatory, and operational challenges remain. Collaboration across industry, government, and technology providers is essential to overcoming these barriers. With better data, regulatory alignment, and investments in new technologies, the energy sector can continue to reduce methane emissions while supporting global energy demands.

———

HETI thanks Chris Duffy, Baytown Blue Hydrogen Venture Executive, ExxonMobil; Cody Johnson, CEO, SCS Technologies; and Nishadi Davis, Head of Carbon Advisory Americas, wood plc, for their participation in this event.

This article originally appeared on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.