A photo of BP's new solar farm in Texas. Photo via bp.com

On rural Texas farmland, beneath hundreds of rows of solar panels, a troop of stocky sheep rummage through pasture, casually bumping into one another as they remain committed to a single task: chewing grass.

The booming solar industry has found an unlikely mascot in sheep as large-scale solar farms crop up across the U.S. and in the plain fields of Texas. In Milam County, outside Austin, SB Energy operates the fifth-largest solar project in the country, capable of generating 900 megawatts of power across 4,000 acres.

How do they manage all that grass? With the help of about 3,000 sheep, which are better suited than lawnmowers to fit between small crevices and chew away rain or shine.

The proliferation of sheep on solar farms is part of a broader trend — solar grazing — that has exploded alongside the solar industry.

Agrivoltaics, a method using land for both solar energy production and agriculture, is on the rise with more than 60 solar grazing projects in the U.S., according to the National Renewable Energy Laboratory. The American Solar Grazing Association says 27 states engage in the practice.

"The industry tends to rely on gas-powered mowers, which kind of contradicts the purpose of renewables," SB Energy asset manager James Hawkins said.

A sunny opportunity
Putting the animals to work on solar fields also provides some help to the sheep and wool market, which has struggled in recent years. The inventory of sheep and lamb in Texas fell to 655,000 in January 2024, a 4% drop from the previous year, according to the most recent figures from the U.S. Department of Agriculture.

Because solar fields use sunny, flat land that is often ideal for livestock grazing, the power plants have been used in coordination with farmers rather than against them.

Sheepherder JR Howard accidentally found himself in the middle of Texas' burgeoning clean energy transition. In 2021, he and his family began contracting with solar farms — sites with hundreds of thousands of solar modules — to use his sheep to eat the grass.

What was once a small business has turned into a full-scale operation with more than 8,000 sheep and 26 employees.

"Just the growth has been kind of crazy for us," said Howard, who named his company Texas Solar Sheep. "It's been great for me and my family."

Following the herd
Some agriculture experts say Howard's success reflects how solar farms have become a boon for some ranchers.

Reid Redden, a sheep farmer and solar vegetation manager in San Angelo, Texas, said a successful sheep business requires agricultural land that has become increasingly scarce.

"Solar grazing is probably the biggest opportunity that the sheep industry had in the United States in several generations," Redden said.

The response to solar grazing has been overwhelmingly positive in rural communities near South Texas solar farms where Redden raises sheep for sites to use, he said.

"I think it softens the blow of the big shock and awe of a big solar farm coming in," Redden said.

Fielding more research
Agrivoltaics itself isn't new. Solar farms are land-intensive and require a lot of space that could be used for food production. Agrivoltaics compensates by allowing the two to coexist, whether growing food or caring for livestock.

There is a lot still unknown about the full effects of solar grazing, said Nuria Gomez-Casanovas, an assistant professor in regenerative system ecology at Texas A&M University.

Not enough studies have been done to know the long-term environmental impacts, such as how viable the soil will be for future agriculture, although Gomez-Casanovas suspects solar grazing may improve sheep productivity because the panels provide shade and can be more cost-efficient than mowing.

"We really have more questions than answers," Gomez-Casanovas said. "There are studies that show that the land productivity is not higher versus solar alone or agriculture alone, so it's context-dependent."

As one of Texas' largest solar sheep operators, Howard has more clients than he can handle. He expects to add about 20 more employees by the end of this year, which would nearly double his current workforce. As for the sheep, he has enough already.

What started as a way to bring natural cleaning products in from overseas has turned into a promising application for more sustainable agriculture solutions. Photo via LinkedIn

Houstonian brings natural, sustainable cleaning products to US with potential impact on agriculture industry

clean and green

When Kristy Phillips sought out a more natural cleaning solution, she didn't realize she'd be opting for a more sustainable option too.

Phillips founded Clean Habits and introduced Synbio, a patented cleaning formula that combines a unique blend of prebiotics and probiotics for their signature five-day clean, to the United States.

“Actually, we are a synbiotic, which is a prebiotic and a probiotic fused together,” says Phillips, founder and CEO of Clean Habits. “And that's what gives us the five-day clean, and we also have the longest shelf life — three years — of any probiotic on the market.”

Phillips learned about the European product almost three months before the COVID-19 pandemic. She had heard of probiotics for gut health but had no idea about probiotic cleaning.

“When COVID actually hit, I went back and really started researching the manufacturer who is based in Europe and all of their pre- and probiotic cleaners,” remembers Phillips. “And I just found it to be so interesting that they were using natural probiotics from the dirt, from the soil, from Mother Earth. And they created this entire product line that they have been using for over 15 years. And they had so many clinical trials and hospital studies and university studies that were showing that these probiotic cleaners were working, and they were reducing bacteria, viruses, even viruses in air."

But Phillips soon learned more of the sustainability angle of the product.

“Not only were they in the cleaning spray sector, but they were also already in water purification. They were in agriculture for animal house farming. They were doing a big trial in the subway station in Milan, putting the probiotics through a big HVAC system. And I just thought, there must be something here.”

Phillips was right. After reaching out to the manufacturer, she asked if they had a distributor here in the United States. They didn't.

“Since they didn’t have a distributor here in the U.S., I got the products and tried them out for myself,” says Phillips. “They were chemical-free, non-toxic and eco-friendly and after comparing them side-by-side with the commercial cleaners we all grew up with like the Lysols, bleach, and 409s, I found that the probiotic cleaners not only worked on surface areas to remove bad bacteria and germs, they continued to work for up to five full days at 100 percent.

“The commercial cleaners did kill 99.99 percent of all bacteria and germs, but they only did it for 30 minutes. And then the bacteria and germs start to grow back. And I am like, you know, nobody tells you that in their marketing. So that is what started my journey on the probiotics and creating a line to bring to the market here in the United States.”

Moving forward, Phillips’ vision for Clean Habits will extend beyond just traditional cleaning products. She sees that she can also have an impact on the industrial and commercial side of things.

“Right now, we are doing testing in agriculture, and this is something that our manufacturers in Europe have already done and they have been extremely successful with it,” says Phillips. “The goal is to see if we could reduce the use of pesticides in farming and replace it with just misting and spraying with the probiotics.

“We already know that by incorporating the probiotics throughout water systems, that we can actually clean the water and take it back to 100 percent natural water or pure water. We can get rid of E. coli, MRSA, staph. And so, we are going to start working with the state of Texas and into animal house cleaning and farming and cleaning their water.”

Additionally, Clean Habits already has research that proves that by incorporating the probiotics, they can start eliminating the bird flu, which affected a lot of Texas chickens recently to where over 350,000 of them had to be put down.

“We’re really trying to change the faith there in agriculture,” says Phillips. “I mean, to me, it's amazing because when I first started this, I was just trying to launch some cleaning supplies, which is fantastic, but this product is so much more than a multi-purpose cleaning spray, your floor cleaner, your drain cleaner or your laundry detergent. This goes into cleaning water, which is everyone's basic right to have clean water. And the fact that we can do it by using these probiotics, to me, my little brain can't compute that part of it.

“And then when we really did start looking into the agriculture and how, by incorporating the probiotics into the animal house, the cleaning of the water, and putting it into their housing system, that we can reduce methane gas by 41 percent. That is huge. This can profoundly change and revolutionize industries. And to be a part of that, and I am so excited.”

———

This article originally ran on InnovationMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

UH researchers make breakthrough in cutting carbon capture costs

Carbon breakthrough

A team of researchers at the University of Houston has made two breakthroughs in addressing climate change and potentially reducing the cost of capturing harmful emissions from power plants.

Led by Professor Mim Rahimi at UH’s Cullen College of Engineering, the team released two significant publications that made significant strides relating to carbon capture processes. The first, published in Nature Communications, introduced a membraneless electrochemical process that cuts energy requirements and costs for amine-based carbon dioxide capture during the acid gas sweetening process. Another, featured on the cover of ES&T Engineering, demonstrated a vanadium redox flow system capable of both capturing carbon and storing renewable energy.

“These publications reflect our group’s commitment to fundamental electrochemical innovation and real-world applicability,” Rahimi said in a news release. “From membraneless systems to scalable flow systems, we’re charting pathways to decarbonize hard-to-abate sectors and support the transition to a low-carbon economy.”

According to the researchers, the “A Membraneless Electrochemically Mediated Amine Regeneration for Carbon Capture” research paper marked the beginning of the team’s first focus. The research examined the replacement of costly ion-exchange membranes with gas diffusion electrodes. They found that the membranes were the most expensive part of the system, and they were also a major cause of performance issues and high maintenance costs.

The researchers achieved more than 90 percent CO2 removal (nearly 50 percent more than traditional approaches) by engineering the gas diffusion electrodes. According to PhD student and co-author of the paper Ahmad Hassan, the capture costs approximately $70 per metric ton of CO2, which is competitive with other innovative scrubbing techniques.

“By removing the membrane and the associated hardware, we’ve streamlined the EMAR workflow and dramatically cut energy use,” Hassan said in the news release. “This opens the door to retrofitting existing industrial exhaust systems with a compact, low-cost carbon capture module.”

The second breakthrough, published by PhD student Mohsen Afshari, displayed a reversible flow battery architecture that absorbs CO2 during charging and releases it upon discharge. The results suggested that the technology could potentially provide carbon removal and grid balancing when used with intermittent renewables, such as solar or wind power.

“Integrating carbon capture directly into a redox flow battery lets us tackle two challenges in one device,” Afshari said in the release. “Our front-cover feature highlights its potential to smooth out renewable generation while sequestering CO2.”

As electric bills rise, evidence mounts that data centers share blame

Data Talk

Amid rising electric bills, states are under pressure to insulate regular household and business ratepayers from the costs of feeding Big Tech's energy-hungry data centers.

It's not clear that any state has a solution and the actual effect of data centers on electricity bills is difficult to pin down. Some critics question whether states have the spine to take a hard line against tech behemoths like Microsoft, Google, Amazon and Meta.

But more than a dozen states have begun taking steps as data centers drive a rapid build-out of power plants and transmission lines.

That has meant pressuring the nation's biggest power grid operator to clamp down on price increases, studying the effect of data centers on electricity bills or pushing data center owners to pay a larger share of local transmission costs.

Rising power bills are “something legislators have been hearing a lot about. It’s something we’ve been hearing a lot about. More people are speaking out at the public utility commission in the past year than I’ve ever seen before,” said Charlotte Shuff of the Oregon Citizens’ Utility Board, a consumer advocacy group. “There’s a massive outcry.”

Not the typical electric customer

Some data centers could require more electricity than cities the size of Pittsburgh, Cleveland or New Orleans, and make huge factories look tiny by comparison. That's pushing policymakers to rethink a system that, historically, has spread transmission costs among classes of consumers that are proportional to electricity use.

“A lot of this infrastructure, billions of dollars of it, is being built just for a few customers and a few facilities and these happen to be the wealthiest companies in the world,” said Ari Peskoe, who directs the Electricity Law Initiative at Harvard University. “I think some of the fundamental assumptions behind all this just kind of breaks down.”

A fix, Peskoe said, is a “can of worms" that pits ratepayer classes against one another.

Some officials downplay the role of data centers in pushing up electric bills.

Tricia Pridemore, who sits on Georgia’s Public Service Commission and is president of the National Association of Regulatory Utility Commissioners, pointed to an already tightened electricity supply and increasing costs for power lines, utility poles, transformers and generators as utilities replace aging equipment or harden it against extreme weather.

The data centers needed to accommodate the artificial intelligence boom are still in the regulatory planning stages, Pridemore said, and the Data Center Coalition, which represents Big Tech firms and data center developers, has said its members are committed to paying their fair share.

But growing evidence suggests that the electricity bills of some Americans are rising to subsidize the massive energy needs of Big Tech as the U.S. competes in a race against China for artificial intelligence superiority.

Data and analytics firm Wood Mackenzie published a report in recent weeks that suggested 20 proposed or effective specialized rates for data centers in 16 states it studied aren’t nearly enough to cover the cost of a new natural gas power plant.

In other words, unless utilities negotiate higher specialized rates, other ratepayer classes — residential, commercial and industrial — are likely paying for data center power needs.

Meanwhile, Monitoring Analytics, the independent market watchdog for the mid-Atlantic grid, produced research in June showing that 70% — or $9.3 billion — of last year's increased electricity cost was the result of data center demand.

States are responding

Last year, five governors led by Pennsylvania's Josh Shapiro began pushing back against power prices set by the mid-Atlantic grid operator, PJM Interconnection, after that amount spiked nearly sevenfold. They warned of customers “paying billions more than is necessary.”

PJM has yet to propose ways to guarantee that data centers pay their freight, but Monitoring Analytics is floating the idea that data centers should be required to procure their own power.

In a filing last month, it said that would avoid a "massive wealth transfer” from average people to tech companies.

At least a dozen states are eyeing ways to make data centers pay higher local transmission costs.

In Oregon, a data center hot spot, lawmakers passed legislation in June ordering state utility regulators to develop new — presumably higher — power rates for data centers.

The Oregon Citizens’ Utility Board says there is clear evidence that costs to serve data centers are being spread across all customers — at a time when some electric bills there are up 50% over the past four years and utilities are disconnecting more people than ever.

New Jersey’s governor signed legislation last month commissioning state utility regulators to study whether ratepayers are being hit with “unreasonable rate increases” to connect data centers and to develop a specialized rate to charge data centers.

In some other states, like Texas and Utah, governors and lawmakers are trying to avoid a supply-and-demand crisis that leaves ratepayers on the hook — or in the dark.

Doubts about states protecting ratepayers

In Indiana, state utility regulators approved a settlement between Indiana Michigan Power Co., Amazon, Google, Microsoft and consumer advocates that set parameters for data center payments for service.

Kerwin Olsen, of the Citizens Action Council of Indiana, a consumer advocacy group, signed the settlement and called it a “pretty good deal” that contained more consumer protections than what state lawmakers passed.

But, he said, state law doesn't force large power users like data centers to publicly reveal their electric usage, so pinning down whether they're paying their fair share of transmission costs "will be a challenge.”

In a March report, the Environmental and Energy Law Program at Harvard University questioned the motivation of utilities and regulators to shield ratepayers from footing the cost of electricity for data centers.

Both utilities and states have incentives to attract big customers like data centers, it said.

To do it, utilities — which must get their rates approved by regulators — can offer “special deals to favored customers” like a data center and effectively shift the costs of those discounts to regular ratepayers, the authors wrote. Many state laws can shield disclosure of those rates, they said.

In Pennsylvania, an emerging data center hot spot, the state utility commission is drafting a model rate structure for utilities to consider adopting. An overarching goal is to get data center developers to put their money where their mouth is.

“We’re talking about real transmission upgrades, potentially hundreds of millions of dollars,” commission chairman Stephen DeFrank said. “And that’s what you don’t want the ratepayer to get stuck paying for."

8+ can't-miss events at Houston Energy and Climate Startup Week 2025

where to be

Editor's note: This article may be updated to include additional events.

The second annual Houston Energy and Climate Startup Week is less than a month away—and the calendar of events is taking shape.

The series of panels, happy hours and pitch days will take place Sept. 15-19. The Ion District will host many of the week's events.

Here are the details on some of the can't-miss events of the week:

Houston Energy & Climate Startup Week Kickoff Panel and Block Party

Join fellow innovators, founders, investors and energy leaders at this kick-off event hosted by The Ion and HETI, which will feature brief welcome remarks, a panel discussion and networking, followed by a block party on the Ion Plaza.

This event is Monday, Sept. 15, at 4 p.m. at The Ion. Register here.

Energytech Nexus Pilotathon

Grab breakfast and take in keynotes and panels by leaders from New Climate Ventures, V1 Climate, Halliburton, Energy Tech Nexus and many others. Then hear pitches during the Pilotathon, which targets startups ready to implement pilot projects within six to 12 months.

This event is Tuesday, Sept. 16, from 8 a.m.-5 p.m. at GreenStreet. Get tickets here.

Meet the Activate Houston Cohort 2025 Fellows

Meet Activate's latest cohort, which was named this summer, and also learn more about its 2024 group.

This event is Tuesday, Sept. 16, at 5 p.m. at the Ion. Register here.

New Climate Ventures Afterparty

Enjoy music, networking and carbon-negative spirits at Axelrad. Houston startups Quaise Energy, Solidec, Dimensional Energy, Rheom Materials, and Active Surfaces will also be on-site.

This event is Tuesday, Sept. 16, from 6:30-9:30 p.m. at Axelrad. Register here.

Green ICU Conference: Sustainability in Health Care for a Healthier Future

Houston Methodist will host its inaugural Green ICU Conference during Houston Energy & Climate Week. The conference is designed to bring together healthcare professionals, industry leaders, policymakers and innovators to explore solutions for building a more sustainable healthcare system.

This event is Wednesday, Sept. 17. from 8 a.m.-3 p.m. at TMC Helix Park. Register here.

Rice Alliance Energy Tech Venture Forum

Hear from clean energy startups from nine countries and 19 states at the 22nd annual Energy Tech Venture Forum. The 12 companies that were named to Class 5 of the Rice Alliance Clean Energy Accelerator will present during Demo Day to wrap up their 10-week program. Apart from pitches, this event will also host keynotes from Arjun Murti, partner of energy macro and policy at Veriten, and Susan Schofer, partner at HAX and chief science officer at SOSV. Panels will focus on corporate innovation and institutional venture capital.

This event is Thursday, Sept. 18, from 7:30 a.m.-5 p.m. at Rice University’s Jones Graduate School of Business. Register here.

Shell STCH Open House

Get a behind-the-scenes look at how Shell is leveraging open innovation to scale climate tech. The open house will spotlight two Houston-based startups—Mars Materials, which converts captured CO2 into acrylonitrile, and DexMat, which transforms methane into high-performance carbon nanotube fibers.

This event is Thursday, Sept. 18, from 8:30 a.m.-12:15 p.m. at Shell Technology Center. Register here.

ACCEL Year 3 Showcase

Celebrate Advancing Climatetech and Clean Energy Leaders Program, or ACCEL, an accelerator program for startups led by BIPOC and other underrepresented founders from Greentown Labs and Browning the Green Space. Two Houston companies and one from Austin are among the eight startups to be named to the 2025 group. Hear startup pitches from the cohort, and from Greentown's Head of Houston, Lawson Gow, CEO Georgina Campbell Flatter and others.

This event is Thursday, Sept. 18, from 5-8 p.m. at Greentown Labs. Get tickets here.

Halliburton Labs Finalists Pitch Day

Hear from Halliburton Labs' latest cohort of entrepreneurs. The incubator aims to advance the companies’ commercialization with support from Halliburton's network, facilities and financing opportunities. Its latest cohort includes one company from Texas.

This event is Friday, Sept. 19, from 8 a.m.-noon at The Ion. Register here.

Chevron Energy Innovation Finals

The University of Houston will present the 4th Annual Chevron Innovation Commercialization Competition.

The event is Friday, Sept. 19, from 10 a.m.-1:30 p.m. at the University of Houston. Register here.

Houston Energy and Climate Startup Week was founded in 2024 by Rice Alliance for Technology and Entrepreneurship, Halliburton Labs, Greentown Labs, Houston Energy Transition Initiative (HETI), Digital Wildcatters and Activate.

Last year, Houston Energy and Climate Startup Week welcomed more than 2,000 attendees, investors and industry leaders to more than 30 events. It featured more than 100 speakers and showcased more than 125 startups.