coming soon

CERAWeek 2024 returns to Houston to feature thought leadership on energy transition

The CERAWeek by S&P Global 2024 programming will reflect on the reality of the energy transition, including its progress in different regions and across industries, technologies, and politics. Photo by Natalie Harms/InnovationMap

For the 42nd time, CERAWeek is convening energy leaders from around the world for a conference the week of March 18 — and the action will all take place in downtown Houston.

CERAWeek by S&P Global 2024, with its theme of "Multidimensional Energy Transition: Markets, climate, technology and geopolitics," will zero in on the world's journey to zero-carbon, specifically exploring "strategies for a multidimensional, multispeed and multifuel energy transition," according to a news release. The programming will reflect on the reality of the energy transition, including its progress in different regions and across industries, technologies, and politics.

This year, the event is chaired by Daniel Yergin, vice chairman of S&P Global and author of The New Map: Energy, Climate and the Clash of Nations.

“The increasing focus on energy transition following COP28 coincides with a growing realization of just how complex the road ahead will be,” Yergin says in the release. “Expectations of a linear path to Net-zero are giving way to recognition that this will be a multidimensional energy transition—one that is inclusive of different situations in different parts of the world and takes into account energy security and affordability.

"The reality of a multispeed transition presents both opportunities and challenges," he continues. "Meeting those challenges, and realizing the promise, of the new energy future will be the focus of the world’s energy leaders at CERAWeek 2024 in Houston.”

CERAWeek's key themes this year tackle everything from power markets and minerals to geopolitics and tech and innovation.

The CERAWeek Innovation Agora track, which is the program's deeper dive into technology and innovation will feature thought leadership "ranging across AI, decarbonization, low carbon fuels, cybersecurity, hydrogen, nuclear, mining and minerals, mobility, automation, and more," per the release.

Additionally, the “Agora Hubs,” which are dedicated areas focused on climate, hydrogen, and carbon, have returned to an expanded capacity.

The full list of CERAWeek 2024 speakers is available online, as is registration.

Trending News

A View From HETI

Researchers from Rice University say their recent findings could revolutionize power grids, making energy transmission more efficient. Image via Getty Images.

A new study from researchers at Rice University, published in Nature Communications, could lead to future advances in superconductors with the potential to transform energy use.

The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials.

A team led by Rice’s Qimiao Si, the Harry C. and Olga K. Wiess Professor of Physics and Astronomy, used quantum Fisher information (QFI), a concept from quantum metrology, to measure how electron interactions evolve under extreme conditions. The research team also included Rice’s Yuan Fang, Yiming Wang, Mounica Mahankali and Lei Chen along with Haoyu Hu of the Donostia International Physics Center and Silke Paschen of the Vienna University of Technology. Their work showed that the quantum phenomenon of electron entanglement peaks at a quantum critical point, which is the transition between two states of matter.

“Our findings reveal that strange metals exhibit a unique entanglement pattern, which offers a new lens to understand their exotic behavior,” Si said in a news release. “By leveraging quantum information theory, we are uncovering deep quantum correlations that were previously inaccessible.”

The researchers examined a theoretical framework known as the Kondo lattice, which explains how magnetic moments interact with surrounding electrons. At a critical transition point, these interactions intensify to the extent that the quasiparticles—key to understanding electrical behavior—disappear. Using QFI, the team traced this loss of quasiparticles to the growing entanglement of electron spins, which peaks precisely at the quantum critical point.

In terms of future use, the materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

The team also found that quantum information tools can be applied to other “exotic materials” and quantum technologies.

“By integrating quantum information science with condensed matter physics, we are pivoting in a new direction in materials research,” Si said in the release.

Trending News