The CERAWeek by S&P Global 2025 programming will focus on energy policy and the reshaping energy landscape. Photo courtesy of CERAWeek

CERAWeek by S&P Global will bring together energy leaders from around the world for its 43rd annual conference next week, March 10–14, at the Hilton Americas Houston.

U.S. Secretary of Energy Chris Wright and U.S. Secretary of the Interior Doug Burgum will headline the conference with plenary addresses focused on strengthening global energy security.

Wright’s company, Liberty Energy, is also an investor in Houston-based geothermal company Fervo Energy. Burgum also chairs the newly formed White House National Energy Dominance Council and was previously the governor of North Dakota.

"We are very pleased to welcome Secretary Wright to CERAWeek as he leads the Department of Energy and guides U.S. energy policy with the tremendous array of responsibilities that affect American national and energy security," Daniel Yergin, conference chair and Vice Chairman of S&P Global said in a news release. "His insights on the future of U.S. energy policy will be an important and timely contribution to critical dialogues at this year's conference about the technological, market and geopolitical factors that are shaping the global energy landscape."

Yergin added in a separate release: "As the cabinet secretary responsible for federal lands and resources and chairman of the National Energy Dominance Council, (Burgum’s) views on U.S. energy policy and security have tremendous impact. Moreover, he brings in-depth experience of having been governor of a major energy-producing state. His participation will be a timely and important addition to the critical dialogues taking place at this year's conference."

This year, CERAWeek will zero in on the theme “Moving Ahead: Energy strategies for a complex world,” and will consider how changes in policy, technology and geopolitics are reshaping the energy landscape.

Some of the speakers include:

  • Mike Wirth, chairman and CEO of Chevron Corp.
  • Laurence D. Fink, founder, chairman and CEO of BlackRock
  • Murray Auchincloss, CEO of bp plc
  • Vicki Hollub, president and CEO of Oxy
  • Ryan Lance, chairman and CEO of ConocoPhillips
  • Wael Sawan, CEO of Shell
  • Lorenzo Simonelli, chairman and CEO of Baker Hughes
  • John Hess, CEO of Hess Corporation
  • Scott Kirby, CEO of United Airlines
  • And many others

CERAWeek's key themes this year tackle power, grid and electrification, renewables and low-carbon fuels, the capital transition, innovation technology, climate and sustainability and others topics.

The CERAWeek Innovation Agora track, which is the program's deeper dive into technology and innovation will feature thought leadership "transformational technology platforms in energy and adjacent industries ranging across AI, decarbonization, low carbon fuels, cybersecurity, hydrogen, nuclear, mining and minerals, mobility, automation, and more," according to the release.

The "Agora Hubs" will return and will focus on climate, carbon and new energies.

The 2024 CERAWeek addressed topics like funding the energy transition, geothermal energy, AI and more. Registration for 2025 is available now.

In his conversation with S&P Global's Daniel Yergin, Bill Gates discussed AI, Texas as an energy transition hub, and more. Photo via CERAWeek

Bill Gates talks AI, future of energy at CERAWeek address in Houston

overheard

Bill Gates, renowned co-founder of Microsoft and founder of Breakthrough Energy, took the CERAWeek stage to a standing-room-only crowd to discuss his thoughts on the future of energy.

He was joined in conversation with Daniel Yergin, author and vice chairman of S&P Global, at the luncheon on Thursday, March 21. His remarks touched on three themes within the energy transition.

Texas as a hub for energy transition

Yergin started off the conversation inquiring about Gates and his recent tour around Texas, which included visiting energy companies' plants and facilities and their local communities. Though it might surprise people, given the history of oil and gas in the state, Texas has a strong presence in the energy transition, Gates says.

“There is some irony in the fact that so many of the capabilities to embrace (the energy transition) are here in Texas, whether it's the workforce or the permitting,” he says at the event.

Gates adds that while most of the portfolio companies at Breakthrough Energy were founded on the coasts, many turn to Texas when it comes time for their first commercial pilot.

He addressed a progress report on the energy transition as a whole.

“It’s really starting to move. There’s a lot of exciting technologies, and a lot of the big companies are coming in,” he says, specifically noting energy companies' presence at COP28.

“A heroic effort is beginning — I’m very excited about it. But we shouldn’t underestimate how difficult it will be,” he says. “There’s a lot of things that have to happen for these projects to go ahead. It’s far more difficult than anything I worked on at Microsoft.”

Steel and nuclear have big potential for disruption

Gates continued this thought but highlighting that some industries are less advanced than others.

“We’re just at the beginning of many things," he adds, noting that "the steel industry today is 99 percent the traditional process."

With that, steel has a lot of potential to be disrupted, and Breakthrough Energy has two companies working to make the industry greener, but it's an industry that's going to take time to evolve.

Nuclear is another sector Gates is excited about but is developing at a slower pace. Breakthrough Energy has five portfolio companies focused on Nuclear, including TerraPower, which Gates co-founded in 2006.

Despite nearly two decades of development, Gates says TerraPower is a "fast-moving" nuclear company in comparison to other companies out there.

AI's impact is still to be determined

The topic of artificial intelligence inevitably came up, and Gates explains that the technology has come a long way. Microsoft owns a portion of OpenAI, which created ChatGPT. Gates says he expected AI to evolve and to be able to be programmed to understand information to take longer to develop.

“We have achieved a threshold — an unusual threshold because we know how we’ve caused the knowledge represented, but we don’t understand how at a semantic level how that knowledge is being represented,” Gates says.

AI's current applications are within white collar activities, Gates explains, citing writing a regulatory permit or looking at evidence in a lawsuit. He explains that current AI capabilities could continually grow or remain stagnant for a while, he isn't sure.

"The thing that’s daunting is we don’t know how quickly it will improve," he adds.

Gates didn't comment on energy specific AI applications but noted that AI has advanced far past robotics, which would target blue collar roles.

The CERAWeek by S&P Global 2024 programming will reflect on the reality of the energy transition, including its progress in different regions and across industries, technologies, and politics. Photo by Natalie Harms/InnovationMap

CERAWeek 2024 returns to Houston to feature thought leadership on energy transition

coming soon

For the 42nd time, CERAWeek is convening energy leaders from around the world for a conference the week of March 18 — and the action will all take place in downtown Houston.

CERAWeek by S&P Global 2024, with its theme of "Multidimensional Energy Transition: Markets, climate, technology and geopolitics," will zero in on the world's journey to zero-carbon, specifically exploring "strategies for a multidimensional, multispeed and multifuel energy transition," according to a news release. The programming will reflect on the reality of the energy transition, including its progress in different regions and across industries, technologies, and politics.

This year, the event is chaired by Daniel Yergin, vice chairman of S&P Global and author of The New Map: Energy, Climate and the Clash of Nations.

“The increasing focus on energy transition following COP28 coincides with a growing realization of just how complex the road ahead will be,” Yergin says in the release. “Expectations of a linear path to Net-zero are giving way to recognition that this will be a multidimensional energy transition—one that is inclusive of different situations in different parts of the world and takes into account energy security and affordability.

"The reality of a multispeed transition presents both opportunities and challenges," he continues. "Meeting those challenges, and realizing the promise, of the new energy future will be the focus of the world’s energy leaders at CERAWeek 2024 in Houston.”  

CERAWeek's key themes this year tackle everything from power markets and minerals to geopolitics and tech and innovation.

The CERAWeek Innovation Agora track, which is the program's deeper dive into technology and innovation will feature thought leadership "ranging across AI, decarbonization, low carbon fuels, cybersecurity, hydrogen, nuclear, mining and minerals, mobility, automation, and more," per the release.

Additionally, the “Agora Hubs,” which are dedicated areas focused on climate, hydrogen, and carbon, have returned to an expanded capacity.

The full list of CERAWeek 2024 speakers is available online, as is registration.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Greentown Labs adds 6 Texas clean energy startups to Houston incubator

green team

Greentown Labs announced the six startups to join its Houston community in Q2 of 2025.

The companies are among a group of 13 that joined the climatetech incubator, which is co-located in Houston and Boston, in the same time period. The companies that joined the Houston-based lab specialize in a number of clean energy applications, from long-duration energy storage systems to 3D solar towers.

The new Houston members include:

  • Encore CO2, a Louisiana-based company that converts CO2 into ethanol, acetate, ethylene and other sustainable chemicals through its innovative electrolysis technology
  • Janta Power, a Dallas-based company with proprietary 3D-solar-tower technology that deploys solar power vertically rather than flatly, increasing power and energy generation
  • Licube, an Austin-based company focused on sustainable lithium recovery from underutilized sources using its proprietary and patented electrodialysis technology
  • Newfound Materials, a Houston-based company that has developed a predictive engine for materials R&D
  • Pix Force, a Houston-based company that develops AI algorithms to inspect substations, transmission lines and photovoltaic plants using drones
  • Wattsto Energy, a Houston-based manufacturer of a long-duration-energy-storage system with a unique hybrid design that provides fast, safe, sustainable and cost-effective energy storage at the microgrid and grid levels

Seven other companies will join Greentown Boston's incubator. See the full list here.

Greentown Houston also added five startups to its local lab in Q1. Read more about the companies here.

How Planckton Data is building the sustainability label every industry will need

now streaming

There’s a reason “carbon footprint” became a buzzword. It sounds like something we should know. Something we should measure. Something that should be printed next to the calorie count on a label.

But unlike calories, a carbon footprint isn’t universal, standardized, or easy to calculate. In fact, for most companies—especially in energy and heavy industry—it’s still a black box.

That’s the problem Planckton Data is solving.

On this episode of the Energy Tech Startups Podcast, Planckton Data co-founders Robin Goswami and Sandeep Roy sit down to explain how they’re turning complex, inconsistent, and often incomplete emissions data into usable insight. Not for PR. Not for green washing. For real operational and regulatory decisions.

And they’re doing it in a way that turns sustainability from a compliance burden into a competitive advantage.

From calories to carbon: The label analogy that actually works

If you’ve ever picked up two snack bars and compared their calorie counts, you’ve made a decision based on transparency. Robin and Sandeep want that same kind of clarity for industrial products.

Whether it’s a shampoo bottle, a plastic feedstock, or a specialty chemical—there’s now consumer and regulatory pressure to know exactly how sustainable a product is. And to report it.

But that’s where the simplicity ends.

Because unlike food labels, carbon labels can’t be standardized across a single factory. They depend on where and how a product was made, what inputs were used, how far it traveled, and what method was used to calculate the data.

Even two otherwise identical chemicals—one sourced from a refinery in Texas and the other in Europe—can carry very different carbon footprints, depending on logistics, local emission factors, and energy sources.

Planckton’s solution is built to handle exactly this level of complexity.

AI that doesn’t just analyze

For most companies, supply chain emissions data is scattered, outdated, and full of gaps.

That’s where Planckton’s use of AI becomes transformative.

  • It standardizes data from multiple suppliers, geographies, and formats.
  • It uses probabilistic models to fill in the blanks when suppliers don’t provide details.
  • It applies industry-specific product category rules (PCRs) and aligns them with evolving global frameworks like ISO standards and GHG Protocol.
  • It helps companies model decarbonization pathways, not just calculate baselines.

This isn’t generative AI for show. It’s applied machine learning with a purpose: helping large industrial players move from reporting to real action.

And it’s not a side tool. For many of Planckton’s clients, it’s becoming the foundation of their sustainability strategy.

From boardrooms to smokestacks: Where the pressure is coming from

Planckton isn’t just chasing early adopters. They’re helping midstream and upstream industrial suppliers respond to pressure coming from two directions:

  1. Downstream consumer brands—especially in cosmetics, retail, and CPG—are demanding footprint data from every input supplier.
  2. Upstream regulations—especially in Europe—are introducing reporting requirements, carbon taxes, and supply chain disclosure laws.

The team gave a real-world example: a shampoo brand wants to differentiate based on lower emissions. That pressure flows up the value chain to the chemical suppliers. Who, in turn, must track data back to their own suppliers.

It’s a game of carbon traceability—and Planckton helps make it possible.

Why Planckton focused on chemicals first

With backgrounds at Infosys and McKinsey, Robin and Sandeep know how to navigate large-scale digital transformations. They also know that industry specificity matters—especially in sustainability.

So they chose to focus first on the chemicals sector—a space where:

  • Supply chains are complex and often opaque.
  • Product formulations are sensitive.
  • And pressure from cosmetics, packaging, and consumer brands is pushing for measurable, auditable impact data.

It’s a wedge into other verticals like energy, plastics, fertilizers, and industrial manufacturing—but one that’s already showing results.

Carbon accounting needs a financial system

What makes this conversation unique isn’t just the product. It’s the co-founders’ view of the ecosystem.

They see a world where sustainability reporting becomes as robust as financial reporting. Where every company knows its Scope 1, 2, and 3 emissions the way it knows revenue, gross margin, and EBITDA.

But that world doesn’t exist yet. The data infrastructure isn’t there. The standards are still in flux. And the tooling—until recently—was clunky, manual, and impossible to scale.

Planckton is building that infrastructure—starting with the industries that need it most.

Houston as a launchpad (not just a legacy hub)

Though Planckton has global ambitions, its roots in Houston matter.

The city’s legacy in energy and chemicals gives it a unique edge in understanding real-world industrial challenges. And the growing ecosystem around energy transition—investors, incubators, and founders—is helping companies like Planckton move fast.

“We thought we’d have to move to San Francisco,” Robin shares. “But the resources we needed were already here—just waiting to be activated.”

The future of sustainability is measurable—and monetizable

The takeaway from this episode is clear: measuring your carbon footprint isn’t just good PR—it’s increasingly tied to market access, regulatory approval, and bottom-line efficiency.

And the companies that embrace this shift now—using platforms like Planckton—won’t just stay compliant. They’ll gain a competitive edge.

Listen to the full conversation with Planckton Data on the Energy Tech Startups Podcast:

Hosted by Jason Ethier and Nada Ahmed, the Digital Wildcatters’ podcast, Energy Tech Startups, delves into Houston's pivotal role in the energy transition, spotlighting entrepreneurs and industry leaders shaping a low-carbon future.


Gold H2 harvests clean hydrogen from depleted California reservoirs in first field trial

breakthrough trial

Houston climatech company Gold H2 completed its first field trial that demonstrates subsurface bio-stimulated hydrogen production, which leverages microbiology and existing infrastructure to produce clean hydrogen.

Gold H2 is a spinoff of another Houston biotech company, Cemvita.

“When we compare our tech to the rest of the stack, I think we blow the competition out of the water," Prabhdeep Singh Sekhon, CEO of Gold H2 Sekhon previously told Energy Capital.

The project represented the first-of-its-kind application of Gold H2’s proprietary biotechnology, which generates hydrogen from depleted oil reservoirs, eliminating the need for new drilling, electrolysis or energy-intensive surface facilities. The Woodlands-based ChampionX LLC served as the oilfield services provider, and the trial was conducted in an oilfield in California’s San Joaquin Basin.

According to the company, Gold H2’s technology could yield up to 250 billion kilograms of low-carbon hydrogen, which is estimated to provide enough clean power to Los Angeles for over 50 years and avoid roughly 1 billion metric tons of CO2 equivalent.

“This field trial is tangible proof. We’ve taken a climate liability and turned it into a scalable, low-cost hydrogen solution,” Sekhon said in a news release. “It’s a new blueprint for decarbonization, built for speed, affordability, and global impact.”

Highlights of the trial include:

  • First-ever demonstration of biologically stimulated hydrogen generation at commercial field scale with unprecedented results of 40 percent H2 in the gas stream.
  • Demonstrated how end-of-life oilfield liabilities can be repurposed into hydrogen-producing assets.
  • The trial achieved 400,000 ppm of hydrogen in produced gases, which, according to the company,y is an “unprecedented concentration for a huff-and-puff style operation and a strong indicator of just how robust the process can perform under real-world conditions.”
  • The field trial marked readiness for commercial deployment with targeted hydrogen production costs below $0.50/kg.

“This breakthrough isn’t just a step forward, it’s a leap toward climate impact at scale,” Jillian Evanko, CEO and president at Chart Industries Inc., Gold H2 investor and advisor, added in the release. “By turning depleted oil fields into clean hydrogen generators, Gold H2 has provided a roadmap to produce low-cost, low-carbon energy using the very infrastructure that powered the last century. This changes the game for how the world can decarbonize heavy industry, power grids, and economies, faster and more affordably than we ever thought possible.”