grant funding

Houston researcher wins competitive NSF award for work tying machine learning to the power grid

The UH team is developing ways to use machine learning to ensure that power systems can continue to run efficiently when pulling their energy from wind and solar sources. Photo via Getty Images

An associate professor at the University of Houston received the highly competitive National Science Foundation CAREER Award earlier this month for a proposal focused on integrating renewable resources to improve power grids.

The award grants more than $500,000 to Xingpeng Li, assistant professor of electrical and computer engineering and leader of the Renewable Power Grid Lab at UH, to continue his work on developing ways to use machine learning to ensure that power systems can continue to run efficiently when pulling their energy from wind and solar sources, according to a statement from UH. This work has applications in the events of large disturbances to the grid.

Li explains that currently, power grids run off of converted, stored kinetic energy during grid disturbances.

"For example, when the grid experiences sudden large generation losses or increased electrical loads, the stored kinetic energy immediately converted to electrical energy and addressed the temporary shortfall in generation,” Li said in a statement. “However, as the proportion of wind and solar power increases in the grid, we want to maximize their use since their marginal costs are zero and they provide clean energy. Since we reduce the use of those traditional generators, we also reduce the power system inertia (or stored kinetic energy) substantially.”

Li plans to use machine learning to create more streamlined models that can be implemented into day-ahead scheduling applications that grid operators currently use.

“With the proposed new modeling and computational approaches, we can better manage grids and ensure it can supply continuous quality power to all the consumers," he said.

In addition to supporting Li's research and model creations, the funds will also go toward Li and his team's creation of a free, open-source tool for students from kindergarten up through their graduate studies. They are also developing an “Applied Machine Learning in Power Systems” course. Li says the course will help meet workforce needs.

The CAREER Award recognizes early-career faculty members who “have the potential to serve as academic role models in research and education and to lead advances in the mission of their department or organization,” according to the NSF. It's given to about 500 researchers each year.

Earlier this year, Rice assistant professor Amanda Marciel was also granted an NSF CAREER Award to continue her research in designing branch elastomers that return to their original shape after being stretched. The research has applications in stretchable electronics and biomimetic tissues.

Trending News

A View From HETI

Under a new agreement, ExxonMobil and Rice University aim to develop “systematic and comprehensive solutions” to support the global energy transition. Photo via Getty Images.

Houston-based ExxonMobil and Rice University announced a master research agreement this week to collaborate on research initiatives on sustainable energy efforts and solutions. The agreement includes one project that’s underway and more that are expected to launch this year.

“Our commitment to science and engineering, combined with Rice’s exceptional resources for research and innovation, will drive solutions to help meet growing energy demand,” Mike Zamora, president of ExxonMobil Technology and Engineering Co., said in a news release. “We’re thrilled to work together with Rice.”

Rice and Exxon will aim to develop “systematic and comprehensive solutions” to support the global energy transition, according to Rice. The university will pull from the university’s prowess in materials science, polymers and catalysts, high-performance computing and applied mathematics.

“Our agreement with ExxonMobil highlights Rice’s ability to bring together diverse expertise to create lasting solutions,” Ramamoorthy Ramesh, executive vice president for research at Rice, said in the release. “This collaboration allows us to tackle key challenges in energy, water and resource sustainability by harnessing the power of an interdisciplinary systems approach.”

The first research project under the agreement focuses on developing advanced technologies to treat desalinated produced water from oil and gas operations for potential reuse. It's being led by Qilin Li, professor of civil and environmental engineering at Rice and co-director of the Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT) Center.

Li’s research employs electrochemical advanced oxidation processes to remove harmful organic compounds and ammonia-nitrogen, aiming to make the water safe for applications such as agriculture, wildlife and industrial processes. Additionally, the project explores recovering ammonia and producing hydrogen, contributing to sustainable resource management.

Additional projects under the agreement with Exxon are set to launch in the coming months and years, according to Rice.

Trending News