University of Houston professor Xiaonan Shan and the rest of his research team are celebrating fresh funding from a federal grant. Photo via UH.edu

A team of scientists from the University of Houston, in collaboration with Howard University in Washington D.C., has received a $1 million award from the National Science Foundation for a project that aims to automate the discovery of new clean-energy catalysts.

The project, dubbed "Multidisciplinary High-Performance Computing and Artificial Intelligence Enabled Catalyst Design for Micro-Plasma Technologies in Clean Energy Transition," aims to use machine learning and AI to improve the efficiency of catalysts in hydrogen generation, carbon capture and energy storage, according to UH.

“This research directly contributes to these global challenges,” Jiefu Chen, the principal investigator of the project and associate professor of electrical and computer engineering, said in a statement. “This interdisciplinary effort ensures comprehensive and innovative solutions to complex problems.”

Chen is joined by Lars Grabow, professor of chemical and biomolecular engineering; Xiaonan Shan, associate professor of electrical and computing engineering; and Xuquing Wu, associate professor of information science technology. Su Yan, an associate professor of electrical engineering and computer science at Howard University, is collaborating on the project.

The University of Houston team: Xiaonan Shan, associate professor electrical and computing engineering, Jiefu Chen, associate professor of electrical and computer engineering, Lars Grabow, professor of chemical and biomolecular engineering, and Xuquing Wu, associate professor of information science technology. Photo via UH.edu

The team will create a robotic synthesis and testing facility that will automate the experimental testing and verification process of the catalyst design process, which traditionally is slow-going. It will implement AI and advanced, unsupervised machine learning techniques, and have a special focus on plasma reactions.

The project has four main focuses, according to UH.

  1. Using machine learning to discover materials for plasma-assisted catalytic reactions
  2. Developing a model to simulate complex interactions to better understand microwave-plasma-assisted heating
  3. Designing catalysts supports for efficient microwave-assisted reactions
  4. Developing a bench scale reactor to demonstrate the efficiency of the catalysts support system

Additionally, the team will put the funding toward the development of a multidisciplinary research and education program that will train students on using machine learning for topics like computational catalysis, applied electromagnetics and material synthesis. The team is also looking to partner with industry on related projects.

“This project will help create a knowledgeable and skilled workforce capable of addressing critical challenges in the clean energy transition,” Grabow added in a statement. “Moreover, this interdisciplinary project is going to be transformative in that it advances insights and knowledge that will lead to tangible economic impact in the not-too-far future.”

This spring, UH launched a new micro-credential course focused on other applications for AI and robotics in the energy industry.

Around the same time, Microsoft's famous renowned co-founder Bill Gates spoke at CERAWeek to a standing-room-only crowd on the future of the industry. Also founder of Breakthrough Energy, Gates addressed the topic of AI.

Silambam Houston will use the funding to create the Green Mountain Energy Sun Club Sustainability Pavilion. Photo courtesy of Green Mountain

Houston organization grants funding to local arts center to make sustainable updates to facilities

solar-powered spotlight

Green Mountain Energy Sun Club has supplied a grant of nearly $103,000 to a local Indian arts center to make sustainable improvements to its facilities.

Silambam Houston will use the grant to help with the installation of a rooftop solar array and a new pavilion at its Pearland dance studio, which will be called The Green Mountain Energy Sun Club Sustainability Pavilion. The venue will serve as an outdoor gathering space for events at the facility.

“At Green Mountain Energy, we recognize that our choices can have a profound impact on our environment,” Mark Parsons, Green Mountain Energy vice president, says in a news release. “We’re proud to support the rich and diverse culture of the Indian community, and we’re glad to help Silambam take the next step toward a more sustainable future.”

The 14.58 kW solar structure is expected to offset 100 percent of the building’s energy needs, which would save the organization more than $4,000 per year for the next 25 years. Sun Club has donated more than $14 million for 164 projects across Texas and the Northeast since it was founded in 2022.

Silambam is an Indian classical arts organization with an arts academy program that serves 180 students each week with more than 20 teaching artists on staff. The professional dance company has more than 20 dancers that regularly perform at Houston venues like Miller Outdoor Theater where they will perform next on June 7.

“We are thrilled to be able to weave sustainable practices into our arts programming, while also giving back to the community,” founder and executive artistic director of Silambam Dr. Lavanya Rajagopalan said in a news release. “The annual savings from this project will allow us to increase artist pay, provide tuition waivers for economically disadvantaged students, and/or provide free or pay-what-you-can access to our ArtStream Concerts, all while benefiting the environment.”

Silambam Houston will use the grant to help with the installation of a rooftop solar array and a new pavilion at its Pearland dance studio. Photo courtesy of Green Mountain

The UH team is developing ways to use machine learning to ensure that power systems can continue to run efficiently when pulling their energy from wind and solar sources. Photo via Getty Images

Houston researcher wins competitive NSF award for work tying machine learning to the power grid

grant funding

An associate professor at the University of Houston received the highly competitive National Science Foundation CAREER Award earlier this month for a proposal focused on integrating renewable resources to improve power grids.

The award grants more than $500,000 to Xingpeng Li, assistant professor of electrical and computer engineering and leader of the Renewable Power Grid Lab at UH, to continue his work on developing ways to use machine learning to ensure that power systems can continue to run efficiently when pulling their energy from wind and solar sources, according to a statement from UH. This work has applications in the events of large disturbances to the grid.

Li explains that currently, power grids run off of converted, stored kinetic energy during grid disturbances.

"For example, when the grid experiences sudden large generation losses or increased electrical loads, the stored kinetic energy immediately converted to electrical energy and addressed the temporary shortfall in generation,” Li said in a statement. “However, as the proportion of wind and solar power increases in the grid, we want to maximize their use since their marginal costs are zero and they provide clean energy. Since we reduce the use of those traditional generators, we also reduce the power system inertia (or stored kinetic energy) substantially.”

Li plans to use machine learning to create more streamlined models that can be implemented into day-ahead scheduling applications that grid operators currently use.

“With the proposed new modeling and computational approaches, we can better manage grids and ensure it can supply continuous quality power to all the consumers," he said.

In addition to supporting Li's research and model creations, the funds will also go toward Li and his team's creation of a free, open-source tool for students from kindergarten up through their graduate studies. They are also developing an “Applied Machine Learning in Power Systems” course. Li says the course will help meet workforce needs.

The CAREER Award recognizes early-career faculty members who “have the potential to serve as academic role models in research and education and to lead advances in the mission of their department or organization,” according to the NSF. It's given to about 500 researchers each year.

Earlier this year, Rice assistant professor Amanda Marciel was also granted an NSF CAREER Award to continue her research in designing branch elastomers that return to their original shape after being stretched. The research has applications in stretchable electronics and biomimetic tissues.
A Houston research team has scored nearly $100,000 to continue work on food crop protection. Photo via uh.edu

UH team lands grant to study how to protect crops from climate change

fresh funds

A team of researchers at the University of Houston has received a $995,805 grant from the U.S. Department of Agriculture to uncover new ways to protect the world’s food crops from climate change.

The research is being led by Abdul Latif Khan, assistant professor of plant biotechnology at the UH Cullen College of Engineering’s Division of Technology, as the project’s principal investigator. He's joined by other researchers from UH and Texas A&M on the research.

The team will begin performing experiments in Houston next month that focus on two main objectives: "To improve plant growth and build plants’ resistance against climate change,” Khan said in a statement from UH.

They plan to develop novel tools for the agriculture industry as well as new, affordable, easy-to-use methods that safeguard the soil systems and prevent farmers from losing their land.

"We’re exploring two approaches," Khan says in a statement. "One is to adopt naturally relevant systems, the other involves synthetic biology or genetic engineering approaches to producing food.”

Plant biologist Abdul Latif Khan is the project’s principal investigator. Photo via uh.edu

The team will also use the funding to build a new curriculum for students, particularly those who come from communities currently underrepresented among the agriculture industry’s leadership, according to UH.

“With this new project, we hope to expand opportunities in agricultural science and increase representation by opening doors for inspired scientists of many backgrounds,” Khan said.

According to UH, extreme weather events have an impact on the crops themselves, the makeup of soil for new or existing crops, and in turn a farmer’s income and the world's food supply.

"Climate change is affecting the entire earth, and it’s leaving us with less land to produce food," Khan added. "By the beginning of the next century, the world food demand will be almost 30 percent to 35 percent higher than what we are growing now. To reach that higher level, we will need novel tools in our agriculture system."

Last month, two UH professors were named as fellows to the National Academy of Inventors, one of whom was recognized for her vital research leading to innovative solutions in the energy and industrial fields and becoming the first woman in the United States to earn a doctorate degree in petroleum engineering. UH now has 39 professors who are either Fellows or Senior Members of the NAI.

GigaDAC's technology, as it scales, should reduce the cost of construction by two thirds. Photo courtesy of Victory Over Carbon

Houston company scores NSF grant for DAC tech

fresh funding

A Houston startup that's using aerospace engineering in the direct air capture space has received funding to continue research and development on its technology.

Victory Over Carbon Inc. received a Small Business Innovation Research grant for $272,488 from U.S. National Science Foundation. The company, which is based out of Greentown Labs in Houston, has created its GigaDAC system that uses a spray to aerodynamic separator model, reducing costs while maintaining efficacy, according to a news release from the company.

“NSF accelerates the translation of emerging technologies into transformative new products and services,” Erwin Gianchandani, NSF assistant director for Technology, Innovation and Partnerships, says in the release. “We take great pride in funding deep-technology startups and small businesses that will shape science and engineering results into meaningful solutions for today and tomorrow.”

GigaDAC's technology, as it scales, should reduce the cost of construction by two thirds, per the company, while optimizing current DAC operations.

“DAC is a critical pillar to solving climate change, and an immense undertaking as society gets serious about scaling in a way that is both technologically sound as well as commercially viable,” Harrison Rice, CEO of Victory Over Carbon, says in the release “Today’s leading DAC contactor designs are largely an offshoot of cooling tower technology. As a positive, these systems work — but they’re not optimized to scale. For GigaDAC, we went to a blank slate and started with scalability as the first principal; both to build, and to operate efficiently.

"Getting this right means winning in a market expected to grow to over $1 trillion in annual revenue,” he continues.

Since the company has secured funding from the America’s Seed Fund powered by NSF, it can apply for additional funding totaling up to $2 million.

A Houston nonprofit's farm will soon be completely off-grid, running its entire operation on sustainable resources. Photo courtesy of Hope Farms

Houston nonprofit flips switch on solar panel project thanks to sustainability grant

shine on

A Houston-area farm is one step closer to operating completely off-grid thanks to new solar panels installed with funding provided by a grant.

In a step towards a greener future, Hope Farms, a 7-acre farm operated by a Houston nonprofit organization, Recipe for Success Foundation, unveiled 18 new solar panels on Tuesday. This significant move is part of a collective effort to completely transition the farm to solar power, demonstrating its commitment to sustainability.

“The industry (solar power) itself is intimidating to people,” Gracie Cavner, founder and CEO of Hope Farms and Recipe for Success, tells EnergyCapital. “Part of our work is to inspire people to replicate what we're doing. We want to show that things aren't as hard as you think they are.”

The nonprofit organization is recognized in Houston for its work in addressing childhood obesity, with a long held mission of demystifying the common misconceptions around healthy eating. It is now tackling another challenge: dispelling the myth that solar power implementation is difficult. Hope Farms' latest initiative will not only further its energy independence, it will also show that adopting renewable energy, similar to embracing healthy food choices, is a feasible option.

The 18 solar panels will power the farm's composting toilet facility and all of the electricity used in its barn, which acts as its market stand and kitchen. Its next green phase is fast approaching and will implement solar panels on top of its flower studio, where the farm's internet and security systems reside. Its final phase will install a water well pump.

“We really did a lot of direct learning,” Cavner said. “We worked directly with solar engineers, not somebody with a company that benefited from us making one decision or another. I feel like more people would have solar if they realized they could do that.”

This is not the first green step Hope Farms has taken thanks to a Green Mountain Energy Sun Club grant, and certainly not the last. Last year, the farm cut the ribbons to its rainwater capture system that now saves roughly 95,000 gallons of water per year by capitalizing on the city’s abundant rainfall.

Since the farms beginning in 2016, it has relied on solar, even when it was only fields lit by a few lights. Soon, Hope Farms will be completely off-grid, running its entire operation on sustainable resources.

“With this expansion, I feel like it’s going to be taking the rock out of the middle of the river,” Cavner said. “It’s going to open up this train and make it easier for anybody to jump in and do it. The first step is kicking the door open and making more people want to pursue it.”

Hope Farms installed 18 solar panels and already has plans to add more. Photo courtesy of Hope Farms

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

UH's $44 million mass timber building slashed energy use in first year

building up

The University of Houston recently completed assessments on year one of the first mass timber project on campus, and the results show it has had a major impact.

Known as the Retail, Auxiliary, and Dining Center, or RAD Center, the $44 million building showed an 84 percent reduction in predicted energy use intensity, a measure of how much energy a building uses relative to its size, compared to similar buildings. Its Global Warming Potential rating, a ratio determined by the Intergovernmental Panel on Climate Change, shows a 39 percent reduction compared to the benchmark for other buildings of its type.

In comparison to similar structures, the RAD Center saved the equivalent of taking 472 gasoline-powered cars driven for one year off the road, according to architecture firm Perkins & Will.

The RAD Center was created in alignment with the AIA 2030 Commitment to carbon-neutral buildings, designed by Perkins & Will and constructed by Houston-based general contractor Turner Construction.

Perkins & Will’s work reduced the building's carbon footprint by incorporating lighter mass timber structural systems, which allowed the RAD Center to reuse the foundation, columns and beams of the building it replaced. Reused elements account for 45 percent of the RAD Center’s total mass, according to Perkins & Will.

Mass timber is considered a sustainable alternative to steel and concrete construction. The RAD Center, a 41,000-square-foot development, replaced the once popular Satellite, which was a food, retail and hangout center for students on UH’s campus near the Science & Research Building 2 and the Jack J. Valenti School of Communication.

The RAD Center uses more than a million pounds of timber, which can store over 650 metric tons of CO2. Aesthetically, the building complements the surrounding campus woodlands and offers students a view both inside and out.

“Spaces are designed to create a sense of serenity and calm in an ecologically-minded environment,” Diego Rozo, a senior project manager and associate principal at Perkins & Will, said in a news release. “They were conceptually inspired by the notion of ‘unleashing the senses’ – the design celebrating different sights, sounds, smells and tastes alongside the tactile nature of the timber.”

In addition to its mass timber design, the building was also part of an Energy Use Intensity (EUI) reduction effort. It features high-performance insulation and barriers, natural light to illuminate a building's interior, efficient indoor lighting fixtures, and optimized equipment, including HVAC systems.

The RAD Center officially opened Phase I in Spring 2024. The third and final phase of construction is scheduled for this summer, with a planned opening set for the fall.

Experts on U.S. energy infrastructure, sustainability, and the future of data

Guest column

Digital infrastructure is the dominant theme in energy and infrastructure, real estate and technology markets.

Data, the byproduct and primary value generated by digital infrastructure, is referred to as “the fifth utility,” along with water, gas, electricity and telecommunications. Data is created, aggregated, stored, transmitted, shared, traded and sold. Data requires data centers. Data centers require energy. The United States is home to approximately 40% of the world's data centers. The U.S. is set to lead the world in digital infrastructure advancement and has an opportunity to lead on energy for a very long time.

Data centers consume vast amounts of electricity due to their computational and cooling requirements. According to the United States Department of Energy, data centers consume “10 to 50 times the energy per floor space of a typical commercial office building.” Lawrence Berkeley National Laboratory issued a report in December 2024 stating that U.S. data center energy use reached 176 TWh by 2023, “representing 4.4% of total U.S. electricity consumption.” This percentage will increase significantly with near-term investment into high performance computing (HPC) and artificial intelligence (AI). The markets recognize the need for digital infrastructure build-out and, developers, engineers, investors and asset owners are responding at an incredible clip.

However, the energy demands required to meet this digital load growth pose significant challenges to the U.S. power grid. Reliability and cost-efficiency have been, and will continue to be, two non-negotiable priorities of the legal, regulatory and quasi-regulatory regime overlaying the U.S. power grid.

Maintaining and improving reliability requires physical solutions. The grid must be perfectly balanced, with neither too little nor too much electricity at any given time. Specifically, new-build, physical power generation and transmission (a topic worthy of another article) projects must be built. To be sure, innovative financial products such as virtual power purchase agreements (VPPAs), hedges, environmental attributes, and other offtake strategies have been, and will continue to be, critical to growing the U.S. renewable energy markets and facilitating the energy transition, but the U.S. electrical grid needs to generate and move significantly more electrons to support the digital infrastructure transformation.

But there is now a third permanent priority: sustainability. New power generation over the next decade will include a mix of solar (large and small scale, offsite and onsite), wind and natural gas resources, with existing nuclear power, hydro, biomass, and geothermal remaining important in their respective regions.

Solar, in particular, will grow as a percentage of U.S grid generation. The Solar Energy Industries Association (SEIA) reported that solar added 50 gigawatts of new capacity to the U.S. grid in 2024, “the largest single year of new capacity added to the grid by an energy technology in over two decades.” Solar is leading, as it can be flexibly sized and sited.

Under-utilized technology such as carbon capture, utilization and storage (CCUS) will become more prominent. Hydrogen may be a potential game-changer in the medium-to-long-term. Further, a nuclear power renaissance (conventional and small modular reactor (SMR) technologies) appears to be real, with recent commitments from some of the largest companies in the world, led by technology companies. Nuclear is poised to be a part of a “net-zero” future in the United States, also in the medium-to-long term.

The transition from fossil fuels to zero carbon renewable energy is well on its way – this is undeniable – and will continue, regardless of U.S. political and market cycles. Along with reliability and cost efficiency, sustainability has become a permanent third leg of the U.S. power grid stool.

Sustainability is now non-negotiable. Corporate renewable and low carbon energy procurement is strong. State renewable portfolio standards (RPS) and clean energy standards (CES) have established aggressive goals. Domestic manufacturing of the equipment deployed in the U.S. is growing meaningfully and in politically diverse regions of the country. Solar, wind and batteries are increasing less expensive. But, perhaps more importantly, the grid needs as much renewable and low carbon power generation as possible - not in lieu of gas generation, but as an increasingly growing pairing with gas and other technologies. This is not an “R” or “D” issue (as we say in Washington), and it's not an “either, or” issue, it's good business and a physical necessity.

As a result, solar, wind and battery storage deployment, in particular, will continue to accelerate in the U.S. These clean technologies will inevitably become more efficient as the buildout in the U.S. increases, investments continue and technology advances.

At some point in the future (it won’t be in the 2020s, it could be in the 2030s, but, more realistically, in the 2040s), the U.S. will have achieved the remarkable – a truly modern (if not entirely overhauled) grid dependent largely on a mix of zero and low carbon power generation and storage technology. And when this happens, it will have been due in large part to the clean technology deployment and advances over the next 10 to 15 years resulting from the current digital infrastructure boom.

---

Hans Dyke and Gabbie Hindera are lawyers at Bracewell. Dyke's experience includes transactions in the electric power and oil and gas midstream space, as well as transactions involving energy intensive industries such as data storage. Hindera focuses on mergers and acquisitions, joint ventures, and public and private capital market offerings.

Rice researchers' quantum breakthrough could pave the way for next-gen superconductors

new findings

A new study from researchers at Rice University, published in Nature Communications, could lead to future advances in superconductors with the potential to transform energy use.

The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials.

A team led by Rice’s Qimiao Si, the Harry C. and Olga K. Wiess Professor of Physics and Astronomy, used quantum Fisher information (QFI), a concept from quantum metrology, to measure how electron interactions evolve under extreme conditions. The research team also included Rice’s Yuan Fang, Yiming Wang, Mounica Mahankali and Lei Chen along with Haoyu Hu of the Donostia International Physics Center and Silke Paschen of the Vienna University of Technology. Their work showed that the quantum phenomenon of electron entanglement peaks at a quantum critical point, which is the transition between two states of matter.

“Our findings reveal that strange metals exhibit a unique entanglement pattern, which offers a new lens to understand their exotic behavior,” Si said in a news release. “By leveraging quantum information theory, we are uncovering deep quantum correlations that were previously inaccessible.”

The researchers examined a theoretical framework known as the Kondo lattice, which explains how magnetic moments interact with surrounding electrons. At a critical transition point, these interactions intensify to the extent that the quasiparticles—key to understanding electrical behavior—disappear. Using QFI, the team traced this loss of quasiparticles to the growing entanglement of electron spins, which peaks precisely at the quantum critical point.

In terms of future use, the materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

The team also found that quantum information tools can be applied to other “exotic materials” and quantum technologies.

“By integrating quantum information science with condensed matter physics, we are pivoting in a new direction in materials research,” Si said in the release.