University of Houston professor Xiaonan Shan and the rest of his research team are celebrating fresh funding from a federal grant. Photo via UH.edu

A team of scientists from the University of Houston, in collaboration with Howard University in Washington D.C., has received a $1 million award from the National Science Foundation for a project that aims to automate the discovery of new clean-energy catalysts.

The project, dubbed "Multidisciplinary High-Performance Computing and Artificial Intelligence Enabled Catalyst Design for Micro-Plasma Technologies in Clean Energy Transition," aims to use machine learning and AI to improve the efficiency of catalysts in hydrogen generation, carbon capture and energy storage, according to UH.

“This research directly contributes to these global challenges,” Jiefu Chen, the principal investigator of the project and associate professor of electrical and computer engineering, said in a statement. “This interdisciplinary effort ensures comprehensive and innovative solutions to complex problems.”

Chen is joined by Lars Grabow, professor of chemical and biomolecular engineering; Xiaonan Shan, associate professor of electrical and computing engineering; and Xuquing Wu, associate professor of information science technology. Su Yan, an associate professor of electrical engineering and computer science at Howard University, is collaborating on the project.

The University of Houston team: Xiaonan Shan, associate professor electrical and computing engineering, Jiefu Chen, associate professor of electrical and computer engineering, Lars Grabow, professor of chemical and biomolecular engineering, and Xuquing Wu, associate professor of information science technology. Photo via UH.edu

The team will create a robotic synthesis and testing facility that will automate the experimental testing and verification process of the catalyst design process, which traditionally is slow-going. It will implement AI and advanced, unsupervised machine learning techniques, and have a special focus on plasma reactions.

The project has four main focuses, according to UH.

  1. Using machine learning to discover materials for plasma-assisted catalytic reactions
  2. Developing a model to simulate complex interactions to better understand microwave-plasma-assisted heating
  3. Designing catalysts supports for efficient microwave-assisted reactions
  4. Developing a bench scale reactor to demonstrate the efficiency of the catalysts support system

Additionally, the team will put the funding toward the development of a multidisciplinary research and education program that will train students on using machine learning for topics like computational catalysis, applied electromagnetics and material synthesis. The team is also looking to partner with industry on related projects.

“This project will help create a knowledgeable and skilled workforce capable of addressing critical challenges in the clean energy transition,” Grabow added in a statement. “Moreover, this interdisciplinary project is going to be transformative in that it advances insights and knowledge that will lead to tangible economic impact in the not-too-far future.”

This spring, UH launched a new micro-credential course focused on other applications for AI and robotics in the energy industry.

Around the same time, Microsoft's famous renowned co-founder Bill Gates spoke at CERAWeek to a standing-room-only crowd on the future of the industry. Also founder of Breakthrough Energy, Gates addressed the topic of AI.

Silambam Houston will use the funding to create the Green Mountain Energy Sun Club Sustainability Pavilion. Photo courtesy of Green Mountain

Houston organization grants funding to local arts center to make sustainable updates to facilities

solar-powered spotlight

Green Mountain Energy Sun Club has supplied a grant of nearly $103,000 to a local Indian arts center to make sustainable improvements to its facilities.

Silambam Houston will use the grant to help with the installation of a rooftop solar array and a new pavilion at its Pearland dance studio, which will be called The Green Mountain Energy Sun Club Sustainability Pavilion. The venue will serve as an outdoor gathering space for events at the facility.

“At Green Mountain Energy, we recognize that our choices can have a profound impact on our environment,” Mark Parsons, Green Mountain Energy vice president, says in a news release. “We’re proud to support the rich and diverse culture of the Indian community, and we’re glad to help Silambam take the next step toward a more sustainable future.”

The 14.58 kW solar structure is expected to offset 100 percent of the building’s energy needs, which would save the organization more than $4,000 per year for the next 25 years. Sun Club has donated more than $14 million for 164 projects across Texas and the Northeast since it was founded in 2022.

Silambam is an Indian classical arts organization with an arts academy program that serves 180 students each week with more than 20 teaching artists on staff. The professional dance company has more than 20 dancers that regularly perform at Houston venues like Miller Outdoor Theater where they will perform next on June 7.

“We are thrilled to be able to weave sustainable practices into our arts programming, while also giving back to the community,” founder and executive artistic director of Silambam Dr. Lavanya Rajagopalan said in a news release. “The annual savings from this project will allow us to increase artist pay, provide tuition waivers for economically disadvantaged students, and/or provide free or pay-what-you-can access to our ArtStream Concerts, all while benefiting the environment.”

Silambam Houston will use the grant to help with the installation of a rooftop solar array and a new pavilion at its Pearland dance studio. Photo courtesy of Green Mountain

The UH team is developing ways to use machine learning to ensure that power systems can continue to run efficiently when pulling their energy from wind and solar sources. Photo via Getty Images

Houston researcher wins competitive NSF award for work tying machine learning to the power grid

grant funding

An associate professor at the University of Houston received the highly competitive National Science Foundation CAREER Award earlier this month for a proposal focused on integrating renewable resources to improve power grids.

The award grants more than $500,000 to Xingpeng Li, assistant professor of electrical and computer engineering and leader of the Renewable Power Grid Lab at UH, to continue his work on developing ways to use machine learning to ensure that power systems can continue to run efficiently when pulling their energy from wind and solar sources, according to a statement from UH. This work has applications in the events of large disturbances to the grid.

Li explains that currently, power grids run off of converted, stored kinetic energy during grid disturbances.

"For example, when the grid experiences sudden large generation losses or increased electrical loads, the stored kinetic energy immediately converted to electrical energy and addressed the temporary shortfall in generation,” Li said in a statement. “However, as the proportion of wind and solar power increases in the grid, we want to maximize their use since their marginal costs are zero and they provide clean energy. Since we reduce the use of those traditional generators, we also reduce the power system inertia (or stored kinetic energy) substantially.”

Li plans to use machine learning to create more streamlined models that can be implemented into day-ahead scheduling applications that grid operators currently use.

“With the proposed new modeling and computational approaches, we can better manage grids and ensure it can supply continuous quality power to all the consumers," he said.

In addition to supporting Li's research and model creations, the funds will also go toward Li and his team's creation of a free, open-source tool for students from kindergarten up through their graduate studies. They are also developing an “Applied Machine Learning in Power Systems” course. Li says the course will help meet workforce needs.

The CAREER Award recognizes early-career faculty members who “have the potential to serve as academic role models in research and education and to lead advances in the mission of their department or organization,” according to the NSF. It's given to about 500 researchers each year.

Earlier this year, Rice assistant professor Amanda Marciel was also granted an NSF CAREER Award to continue her research in designing branch elastomers that return to their original shape after being stretched. The research has applications in stretchable electronics and biomimetic tissues.
A Houston research team has scored nearly $100,000 to continue work on food crop protection. Photo via uh.edu

UH team lands grant to study how to protect crops from climate change

fresh funds

A team of researchers at the University of Houston has received a $995,805 grant from the U.S. Department of Agriculture to uncover new ways to protect the world’s food crops from climate change.

The research is being led by Abdul Latif Khan, assistant professor of plant biotechnology at the UH Cullen College of Engineering’s Division of Technology, as the project’s principal investigator. He's joined by other researchers from UH and Texas A&M on the research.

The team will begin performing experiments in Houston next month that focus on two main objectives: "To improve plant growth and build plants’ resistance against climate change,” Khan said in a statement from UH.

They plan to develop novel tools for the agriculture industry as well as new, affordable, easy-to-use methods that safeguard the soil systems and prevent farmers from losing their land.

"We’re exploring two approaches," Khan says in a statement. "One is to adopt naturally relevant systems, the other involves synthetic biology or genetic engineering approaches to producing food.”

Plant biologist Abdul Latif Khan is the project’s principal investigator. Photo via uh.edu

The team will also use the funding to build a new curriculum for students, particularly those who come from communities currently underrepresented among the agriculture industry’s leadership, according to UH.

“With this new project, we hope to expand opportunities in agricultural science and increase representation by opening doors for inspired scientists of many backgrounds,” Khan said.

According to UH, extreme weather events have an impact on the crops themselves, the makeup of soil for new or existing crops, and in turn a farmer’s income and the world's food supply.

"Climate change is affecting the entire earth, and it’s leaving us with less land to produce food," Khan added. "By the beginning of the next century, the world food demand will be almost 30 percent to 35 percent higher than what we are growing now. To reach that higher level, we will need novel tools in our agriculture system."

Last month, two UH professors were named as fellows to the National Academy of Inventors, one of whom was recognized for her vital research leading to innovative solutions in the energy and industrial fields and becoming the first woman in the United States to earn a doctorate degree in petroleum engineering. UH now has 39 professors who are either Fellows or Senior Members of the NAI.

GigaDAC's technology, as it scales, should reduce the cost of construction by two thirds. Photo courtesy of Victory Over Carbon

Houston company scores NSF grant for DAC tech

fresh funding

A Houston startup that's using aerospace engineering in the direct air capture space has received funding to continue research and development on its technology.

Victory Over Carbon Inc. received a Small Business Innovation Research grant for $272,488 from U.S. National Science Foundation. The company, which is based out of Greentown Labs in Houston, has created its GigaDAC system that uses a spray to aerodynamic separator model, reducing costs while maintaining efficacy, according to a news release from the company.

“NSF accelerates the translation of emerging technologies into transformative new products and services,” Erwin Gianchandani, NSF assistant director for Technology, Innovation and Partnerships, says in the release. “We take great pride in funding deep-technology startups and small businesses that will shape science and engineering results into meaningful solutions for today and tomorrow.”

GigaDAC's technology, as it scales, should reduce the cost of construction by two thirds, per the company, while optimizing current DAC operations.

“DAC is a critical pillar to solving climate change, and an immense undertaking as society gets serious about scaling in a way that is both technologically sound as well as commercially viable,” Harrison Rice, CEO of Victory Over Carbon, says in the release “Today’s leading DAC contactor designs are largely an offshoot of cooling tower technology. As a positive, these systems work — but they’re not optimized to scale. For GigaDAC, we went to a blank slate and started with scalability as the first principal; both to build, and to operate efficiently.

"Getting this right means winning in a market expected to grow to over $1 trillion in annual revenue,” he continues.

Since the company has secured funding from the America’s Seed Fund powered by NSF, it can apply for additional funding totaling up to $2 million.

A Houston nonprofit's farm will soon be completely off-grid, running its entire operation on sustainable resources. Photo courtesy of Hope Farms

Houston nonprofit flips switch on solar panel project thanks to sustainability grant

shine on

A Houston-area farm is one step closer to operating completely off-grid thanks to new solar panels installed with funding provided by a grant.

In a step towards a greener future, Hope Farms, a 7-acre farm operated by a Houston nonprofit organization, Recipe for Success Foundation, unveiled 18 new solar panels on Tuesday. This significant move is part of a collective effort to completely transition the farm to solar power, demonstrating its commitment to sustainability.

“The industry (solar power) itself is intimidating to people,” Gracie Cavner, founder and CEO of Hope Farms and Recipe for Success, tells EnergyCapital. “Part of our work is to inspire people to replicate what we're doing. We want to show that things aren't as hard as you think they are.”

The nonprofit organization is recognized in Houston for its work in addressing childhood obesity, with a long held mission of demystifying the common misconceptions around healthy eating. It is now tackling another challenge: dispelling the myth that solar power implementation is difficult. Hope Farms' latest initiative will not only further its energy independence, it will also show that adopting renewable energy, similar to embracing healthy food choices, is a feasible option.

The 18 solar panels will power the farm's composting toilet facility and all of the electricity used in its barn, which acts as its market stand and kitchen. Its next green phase is fast approaching and will implement solar panels on top of its flower studio, where the farm's internet and security systems reside. Its final phase will install a water well pump.

“We really did a lot of direct learning,” Cavner said. “We worked directly with solar engineers, not somebody with a company that benefited from us making one decision or another. I feel like more people would have solar if they realized they could do that.”

This is not the first green step Hope Farms has taken thanks to a Green Mountain Energy Sun Club grant, and certainly not the last. Last year, the farm cut the ribbons to its rainwater capture system that now saves roughly 95,000 gallons of water per year by capitalizing on the city’s abundant rainfall.

Since the farms beginning in 2016, it has relied on solar, even when it was only fields lit by a few lights. Soon, Hope Farms will be completely off-grid, running its entire operation on sustainable resources.

“With this expansion, I feel like it’s going to be taking the rock out of the middle of the river,” Cavner said. “It’s going to open up this train and make it easier for anybody to jump in and do it. The first step is kicking the door open and making more people want to pursue it.”

Hope Farms installed 18 solar panels and already has plans to add more. Photo courtesy of Hope Farms

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Greentown launches 3rd round of collaborative accelerator for energy tech founders of color

browning the green space

For the third year, Greentown Labs and Browning the Green Space have opened applications for ACCEL, a climatetech accelerator designed to bolster BIPOC-led companies.

The program, which is a year-long commitment providing opportunities across funding, networking connections, resources, and more, has applications open until January 7. Each selected company will receive non-dilutive grant funding up to $25,000, trainings from VentureWell, a desk and membership at Greentown Houston or Boston locations, a BGS membership, and more.

A handful of startups will be selected for the program, which is looking for companies at the two to four Technology Readiness Level (TRL) stage with a technology solution across agriculture, buildings, electricity, manufacturing, resiliency and adaptation, and transportation sectors.

“ACCEL has been amazing," Chidalu Onyenso, founder of Cambridge, Massachusetts-based EarthBond, a member of the 2022 cohort, writes on the website. "I’ve really enjoyed the membership and programming. I think it’s fantastic—if I met another Black or Brown founder focused on climatetech, I’d tell them to apply to this program, 100 percent.”

Earlier this year, the program — which is supported by the Massachusetts Clean Energy Center,Microsoft's Climate Innovation Fund, Equinor, Barr Foundationnamed seven companies to its second cohort and six to its inaugural batch in 2022. The 13 companies across two cohorts so far have received $325,000 in grant funding from the program.

"These BIPOC-led startups are developing climate technologies that will lead us to a more equitable and sustainable future," MassCEC CEO Dr. Emily Reichert, the former CEO of Greentown, said of the second cohort in a news release. "We want ALL climatetech innovators and entrepreneurs to thrive here in Massachusetts. We are proud to support the ACCEL accelerator, created and led by Greentown Labs and Browning the Green Space. The ACCEL program is helping us build a more diverse innovation ecosystem by breaking down barriers and expanding opportunities."

Interested and qualifying companies can apply online.

Houston university launches global hub to drive innovation in sustainable energy, advanced technologies

incoming, India

Rice University is launching Rice Global India, which is a strategic initiative to expand India’s rapidly growing education and technology sectors.

The new hub will be in the country’s third-largest city and the center of the country’s high-tech industry, Bengaluru, India, and will include collaborations with top-tier research and academic institutions. Rice continues its collaborations with institutions like the Indian Institute of Technology (IIT) Kanpur and the Indian Institute of Science (IISc) Bengaluru. The partnerships are expected to advance research initiatives, student and faculty exchanges and collaborations in artificial intelligence, biotechnology and sustainable energy.

“India is a country of tremendous opportunity, one where we see the potential to make a meaningful impact through collaboration in research, innovation and education,” Rice President Reginald DesRoches says in a news release. “Our presence in India is a critical step in expanding our global reach, and we are excited to engage more with India’s academic leaders and industries to address some of the most pressing challenges of our time.”

India was a prime spot for the location due to the energy, climate change, artificial intelligence and biotechnology studies that align with Rice’s research that is outlined in its strategic plan Momentous: Personalized Scale for Global Impact.

“India’s position as one of the world’s fastest-growing education and technology markets makes it a crucial partner for Rice’s global vision,” vice president for global at Rice Caroline Levander adds. “The U.S.-India relationship, underscored by initiatives like the U.S.-India Initiative on Critical and Emerging Technology, provides fertile ground for educational, technological and research exchanges.”

On November 18, the university hosted a ribbon-cutting ceremony in Bengaluru, India to help launch the project.

“This expansion reflects our commitment to fostering a more interconnected world where education and research transcend borders,” DesRoches says.

———

This article originally ran on InnovationMap.

ExxonMobil names new partner to bolster US lithium supply chain with offtake agreement

ev supplies en route

Spring-headquartered ExxonMobil Corp. has announced a new MOU for an offtake agreement for up to 100,000 metric tons of lithium carbonate.

The agreement is with LG Chem, which is building its cathode plant in Tennessee and expects it to be the largest of its kind in the country. The project broke ground a year ago and expects an annual production capacity of 60,000 tons. The lithium will be supplied by ExxonMobil.

“America needs secure domestic supply of critical minerals like lithium,” Dan Ammann, president of ExxonMobil Low Carbon Solutions, says in a news release. “ExxonMobil is proud to lead the way in establishing domestic lithium production, creating jobs, driving economic growth, and enhancing energy security here in the United States.”

The industry currently has a lithium supply shortage due to the material's use in electric vehicle batteries and the fact that most of production happens overseas.

“Building a lithium supply chain with ExxonMobil, one of the world’s largest energy companies, holds great significance,” Shin Hak-cheol, CEO of LG Chem, adds. “We will continue to strengthen LG Chem’s competitiveness in the global supply chain for critical minerals.”

Per the release, the final investment decision is still pending.

Earlier this year, Exxon entered into another energy transition partnership, teaming up with Japan’s Mitsubishi to potentially produce low-carbon ammonia and nearly carbon-free hydrogen at ExxonMobil’s facility in Baytown.

Last month, the company announced it had signed the biggest offshore carbon dioxide storage lease in the U.S. ExxonMobil says the more than 271,000-acre site, being leased from the Texas General Land Office, complements the onshore CO2 storage portfolio that it’s assembling.