fresh funds

UH team lands grant to study how to protect crops from climate change

A Houston research team has scored nearly $100,000 to continue work on food crop protection. Photo via uh.edu

A team of researchers at the University of Houston has received a $995,805 grant from the U.S. Department of Agriculture to uncover new ways to protect the world’s food crops from climate change.

The research is being led by Abdul Latif Khan, assistant professor of plant biotechnology at the UH Cullen College of Engineering’s Division of Technology, as the project’s principal investigator. He's joined by other researchers from UH and Texas A&M on the research.

The team will begin performing experiments in Houston next month that focus on two main objectives: "To improve plant growth and build plants’ resistance against climate change,” Khan said in a statement from UH.

They plan to develop novel tools for the agriculture industry as well as new, affordable, easy-to-use methods that safeguard the soil systems and prevent farmers from losing their land.

"We’re exploring two approaches," Khan says in a statement. "One is to adopt naturally relevant systems, the other involves synthetic biology or genetic engineering approaches to producing food.”

Plant biologist Abdul Latif Khan is the project’s principal investigator. Photo via uh.edu

The team will also use the funding to build a new curriculum for students, particularly those who come from communities currently underrepresented among the agriculture industry’s leadership, according to UH.

“With this new project, we hope to expand opportunities in agricultural science and increase representation by opening doors for inspired scientists of many backgrounds,” Khan said.

According to UH, extreme weather events have an impact on the crops themselves, the makeup of soil for new or existing crops, and in turn a farmer’s income and the world's food supply.

"Climate change is affecting the entire earth, and it’s leaving us with less land to produce food," Khan added. "By the beginning of the next century, the world food demand will be almost 30 percent to 35 percent higher than what we are growing now. To reach that higher level, we will need novel tools in our agriculture system."

Last month, two UH professors were named as fellows to the National Academy of Inventors, one of whom was recognized for her vital research leading to innovative solutions in the energy and industrial fields and becoming the first woman in the United States to earn a doctorate degree in petroleum engineering. UH now has 39 professors who are either Fellows or Senior Members of the NAI.

Trending News

A View From HETI

Researchers from Rice University say their recent findings could revolutionize power grids, making energy transmission more efficient. Image via Getty Images.

A new study from researchers at Rice University, published in Nature Communications, could lead to future advances in superconductors with the potential to transform energy use.

The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials.

A team led by Rice’s Qimiao Si, the Harry C. and Olga K. Wiess Professor of Physics and Astronomy, used quantum Fisher information (QFI), a concept from quantum metrology, to measure how electron interactions evolve under extreme conditions. The research team also included Rice’s Yuan Fang, Yiming Wang, Mounica Mahankali and Lei Chen along with Haoyu Hu of the Donostia International Physics Center and Silke Paschen of the Vienna University of Technology. Their work showed that the quantum phenomenon of electron entanglement peaks at a quantum critical point, which is the transition between two states of matter.

“Our findings reveal that strange metals exhibit a unique entanglement pattern, which offers a new lens to understand their exotic behavior,” Si said in a news release. “By leveraging quantum information theory, we are uncovering deep quantum correlations that were previously inaccessible.”

The researchers examined a theoretical framework known as the Kondo lattice, which explains how magnetic moments interact with surrounding electrons. At a critical transition point, these interactions intensify to the extent that the quasiparticles—key to understanding electrical behavior—disappear. Using QFI, the team traced this loss of quasiparticles to the growing entanglement of electron spins, which peaks precisely at the quantum critical point.

In terms of future use, the materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

The team also found that quantum information tools can be applied to other “exotic materials” and quantum technologies.

“By integrating quantum information science with condensed matter physics, we are pivoting in a new direction in materials research,” Si said in the release.

Trending News