the view from heti

New initiative to drive efforts to deploy first advanced small modular nuclear reactor

The International Energy Agency has determined that nuclear energy production would need to increase 80 percent globally by 2040 to stay on track with sustainability targets, including international climate goals. Photo via houston.org

A new initiative from X-energy, bolstered by Dow, is powering low-carbon emissions energy. X-energy, LLC is a nuclear reactor and fuel design engineering company. The company was selected by the U.S. Department of Energy in 2020 to receive up to $1.2 billion under the Advanced Reactor Demonstration Program Cooperative Agreement in federal cost-shared funding to develop, license, build, and demonstrate an operational advanced reactor and fuel fabrication facility within a 10-year span.

In 2022, X-energy announced a $50 million joint development agreement with multinational chemical giant Dow to demonstrate the first-grid advanced nuclear reactor at an industrial site. As part of the agreement, Dow is now a sub-awardee under X-energy’s ARDP with the DOE. At the time of the announcement, Dow also brought to light its intention to take a minority equity stake in X-energy.

Last month, the University of Texas at Austin Cockrell School of Engineering hosted a panel discussion with Governor Abbott, he noted “Texas is the energy capital of the world” Abbott said, “When you look at the fact that Texas is the fastest-growing state with regard to population and businesses, you know that our demand for power is only going to increase.” Abbott also said, “We’re going to be studying and evaluating the reliability, the safety of nuclear power. If it passes all the tests, we will be looking to dramatically expand nuclear power in the state of Texas for the primary purpose of providing reliable, dispatchable power to our grid.”

The International Energy Agency has determined that nuclear energy production would need to increase 80 percent globally by 2040 to stay on track with sustainability targets, including international climate goals.

Dow and X-energy are slated to install an Xe-100 high-temperature, gas-cooled reactor plant at one of Dow’s sites in Seadrift, between Corpus Christi and Houston, which produces more than 4 million pounds each year of materials used in packaging, footwear, wire and cable insulation and solar cell membranes. It also is expected to reduce the plant’s emissions by 440,000 metric tons of carbon dioxide equivalent annually, as steps by Michigan-based Dow toward achieving goals of carbon neutrality by 2050 and reducing carbon emissions by 30 percent by 2030.

Jim Fitterling, Dow chairman and CEO, noted in a press release issued in early March, “The utilization of X-energy’s fourth generation nuclear technology will enable Dow to take a major step in reducing our carbon emissions while delivering lower carbon footprint products to our customers and society,” he said. “The collaboration with X-energy and the DOE will serve as a leading example of how the industrial sector can safely, effectively and affordably decarbonize.”

X-energy will install four of its Xe-100 reactors at the coastal site with each unit designed to produce 80 megawatts of energy fueled by the company’s baseball-sized uranium fuel kernels, encased in layers of pyrolytic carbon, silicon carbide and porous carbon. The reactors will partly be constructed by Fort Worth-based Paragon Energy Solutions, LLC, a supply chain management company that focuses its efforts on tackling the nuclear industry’s most difficult challenges. The Xe-100 modular reactor is one of two designs selected by the DOE to receive $80 million each of initial cost-shared funding to build an advanced reactor demonstration plant that can be operational within seven years.

———

This article originally ran on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.

Trending News

A View From HETI

A View From UH

A Rice University professor studied the Earth's carbon cycle in the Rio Madre de Dios to shed light on current climate conditions. Photo courtesy of Mark Torres/Rice University

Carbon cycles through Earth, its inhabitants, and its atmosphere on a regular basis, but not much research has been done on that process and qualifying it — until now.

In a recent study of a river system extending from the Peruvian Andes to the Amazon floodplains, Rice University’s Mark Torres and collaborators from five institutions proved that that high rates of carbon breakdown persist from mountaintop to floodplain.

“The purpose of this research was to quantify the rate at which Earth naturally releases carbon dioxide into the atmosphere and find out whether this process varies across different geographic locations,” Torres says in a news release.

Torres published his findings in a study published in PNAS, explaining how they used rhenium — a silvery-gray, heavy transition metal — as a proxy for carbon. The research into the Earth’s natural, pre-anthropogenic carbon cycle stands to benefit humanity by providing valuable insight to current climate challenges.

“This research used a newly-developed technique pioneered by Robert Hilton and Mathieu Dellinger that relies on a trace element — rhenium — that’s incorporated in fossil organic matter,” Torres says. “As plankton die and sink to the bottom of the ocean, that dead carbon becomes chemically reactive in a way that adds rhenium to it.”

The research was done in the Rio Madre de Dios basin and supported by funding from a European Research Council Starting Grant, the European Union COFUND/Durham Junior Research Fellowship, and the National Science Foundation.

“I’m very excited about this tool,” Torres said. “Rice students have deployed this same method in our lab here, so now we can make this kind of measurement and apply it at other sites. In fact, as part of current research funded by the National Science Foundation, we are applying this technique in Southern California to learn how tectonics and climate influence the breakdown of fossil carbon.”

Torres also received a three-year grant from the Department of Energy to study soil for carbon storage earlier this year.

Trending News