subsea innovation

UH team partners with Chevron, Oceaneering for remote-operated pipeline inspector

The robots, developed by UH researchers, will provide a safer and more cost effective alternative to pipeline inspections, which are traditionally performed by human divers and require a great deal of time and money. Photo via UH.edu

Two professors at the University of Houston have developed an autonomous subsea vehicle that aims to decrease the number and severity of oil spills.

Known as SmartTouch technology, the Remote Operated Vehicles (ROVs) use smart touch sensors, video cameras and scanning sonars to inspect flange bolts in subsea pipelines, which are considered to lead to increased rates of leakage, according to a release from the university.

The ROVs, developed by UH's Zheng Chen and Gangbing Song, will provide a safer and more cost effective alternative to pipeline inspections, which are traditionally performed by human divers and require a great deal of time and money.

“By automating the inspection process with this state-of-the art robotic technology, we can dramatically reduce the cost and risk of these important subsea inspections which will lead to safer operations of offshore oil and gas pipelines as less intervention from human divers will be needed,” Chen, the Bill D. Cook Assistant Professor of Mechanical Engineering, said in a statement.

The technology will also be highly accurate in monitoring corrosion, which according to Song, the John and Rebecca Moores Professor of Mechanical Engineering, is responsible for most small leaks in subsea pipelines.

The project is funded by a $960,000 grant from the Bureau of Safety and Environmental Enforcement (BSEE), which is a part of the U.S. Department of the Interior. Chen and Song are also collaborating with Houston-based Oceaneering International on the development of the ROVs, which Oceaneering specializes in. Energy giant Chevron will evaluate the technology’s future commercialization, according to UH, and preliminary studies were funded by the university's Subsea Systems Institute.

Thus far, a prototype of the ROVs has been tested in Chen's lab at UH and in Galveston Bay. Experiments showed the technology's ability to inspect the looseness of subsea bolted connections, like flange bolts.

Chen and Song see other applications for their technology, as well.

"Ultimately, the project will push the boundaries of what can be accomplished by integrating robotics and structural health monitoring technologies," Chen added in the statement. "With proper implementation, the rate of subsea pipeline failure and related accidents will decrease, and subsea operations will be free to expand at a faster rate than before.”

Earlier this summer the UH Subsea Systems Institute and SPRINT Robotics teamed up to develop a robotics training program for the energy industry known as “Robotics in Energy.” The first of a series of two-day courses debuted in May and a subsequent course, Automation & Autonomy, will launch next month. Others are expected to be rolled out in the future as part of the university's Micro-Credentialing Programs in UH Energy.

Additionally Chevron and UH partnered up again last month to announce its inaugural cohort of UH-Chevron Energy Graduate Fellows.

Trending News

A View From HETI

Here's 1PoinFive's newest customer on its Texas CCUS project. Photo via 1pointfive.com

Occidental Petroleum’s Houston-based carbon capture, utilization and, sequestration (CCUS) subsidiary, 1PointFive, has inked a six-year deal to sell 500,000 metric tons of carbon dioxide removal credits to software giant Microsoft.

In a news release, 1Point5 says this agreement represents the largest-ever single purchase of carbon credits enabled by direct air capture (DAC). DAC technology pulls CO2 from the air at any location, not just where carbon dioxide is emitted.

Under the agreement, the carbon dioxide that underlies the credits will be stored in a below-the-surface saline aquifer and won’t be used to produce oil or gas.

“A commitment of this magnitude further demonstrates how one of the world’s largest corporations is integrating scalable [DAC] into its net-zero strategy,” says Michael Avery, president and general manager of 1PointFive. “Energy demand across the technology industry is increasing, and we believe [DAC] is uniquely suited to remove residual emissions and further climate goals.”

Brian Marrs, senior director for carbon removal and energy at Microsoft, says DAC plays a key role in Microsoft’s effort to become carbon-negative by 2030.

The carbon dioxide will be stored at 1PointFive’s first industrial-scale DAC plant, being built near Odessa. The $1.3 billion Stratos project, which 1Point5 is developing through a joint venture with investment manager BlackRock, is designed to capture up to 500,000 metric tons of CO2 per year.

The facility is scheduled to open in mid-2025.

Aside from Microsoft, organizations that have agreed to buy carbon removal credits from 1Point5 include Amazon, Airbus, All Nippon Airways, the Houston Astros, the Houston Texans, and TD Bank.

Occidental says 1PointFive plans to set up more than 100 DAC facilities worldwide by 2035.

Trending News