The robots, developed by UH researchers, will provide a safer and more cost effective alternative to pipeline inspections, which are traditionally performed by human divers and require a great deal of time and money. Photo via UH.edu

Two professors at the University of Houston have developed an autonomous subsea vehicle that aims to decrease the number and severity of oil spills.

Known as SmartTouch technology, the Remote Operated Vehicles (ROVs) use smart touch sensors, video cameras and scanning sonars to inspect flange bolts in subsea pipelines, which are considered to lead to increased rates of leakage, according to a release from the university.

The ROVs, developed by UH's Zheng Chen and Gangbing Song, will provide a safer and more cost effective alternative to pipeline inspections, which are traditionally performed by human divers and require a great deal of time and money.

“By automating the inspection process with this state-of-the art robotic technology, we can dramatically reduce the cost and risk of these important subsea inspections which will lead to safer operations of offshore oil and gas pipelines as less intervention from human divers will be needed,” Chen, the Bill D. Cook Assistant Professor of Mechanical Engineering, said in a statement.

The technology will also be highly accurate in monitoring corrosion, which according to Song, the John and Rebecca Moores Professor of Mechanical Engineering, is responsible for most small leaks in subsea pipelines.

The project is funded by a $960,000 grant from the Bureau of Safety and Environmental Enforcement (BSEE), which is a part of the U.S. Department of the Interior. Chen and Song are also collaborating with Houston-based Oceaneering International on the development of the ROVs, which Oceaneering specializes in. Energy giant Chevron will evaluate the technology’s future commercialization, according to UH, and preliminary studies were funded by the university's Subsea Systems Institute.

Thus far, a prototype of the ROVs has been tested in Chen's lab at UH and in Galveston Bay. Experiments showed the technology's ability to inspect the looseness of subsea bolted connections, like flange bolts.

Chen and Song see other applications for their technology, as well.

"Ultimately, the project will push the boundaries of what can be accomplished by integrating robotics and structural health monitoring technologies," Chen added in the statement. "With proper implementation, the rate of subsea pipeline failure and related accidents will decrease, and subsea operations will be free to expand at a faster rate than before.”

Earlier this summer the UH Subsea Systems Institute and SPRINT Robotics teamed up to develop a robotics training program for the energy industry known as “Robotics in Energy.” The first of a series of two-day courses debuted in May and a subsequent course, Automation & Autonomy, will launch next month. Others are expected to be rolled out in the future as part of the university's Micro-Credentialing Programs in UH Energy.

Additionally Chevron and UH partnered up again last month to announce its inaugural cohort of UH-Chevron Energy Graduate Fellows.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston researchers harness dialysis for new wastewater treatment process

waste not

By employing medical field technology dialysis, researchers at Rice University and the Guangdong University of Technology in China uncovered a new way to treat high-salinity organic wastewater.

In the medical field, dialysis uses a machine called a dialyzer to filter waste and excess fluid from the blood. In a study published in Nature Water, Rice’s team found that mimicking dialysis can separate salts from organic substances with minimal dilution of the wastewater, addressing some of the limitations of previous methods.

The researchers say this has the potential to lower costs, recover valuable resources across a range of industrial sectors and reduce environmental impacts.

“Traditional methods often demand a lot of energy and require repeated dilutions,” Yuanmiaoliang “Selina” Chen, a co-first author and postdoctoral associate in Elimelech’s lab at Rice, said in a news release. “Dialysis eliminates many of these pain points, reducing water consumption and operational overheads.”

Various industries generate high-salinity organic wastewater, including petrochemical, pharmaceutical and textile manufacturing. The wastewater’s high salt and organic content can present challenges for existing treatment processes. Biological and advanced oxidation treatments become less effective with higher salinity levels. Thermal methods are considered “energy intensive” and susceptible to corrosion.

Ultimately, the researchers found that dialysis effectively removed salt from water without requiring large amounts of fresh water. This process allows salts to move into the dialysate stream while keeping most organic compounds in the original solution. Because dialysis relies on diffusion instead of pressure, salts and organics cross the membrane at different speeds, making the separation method more efficient.

“Dialysis was astonishingly effective in separating the salts from the organics in our trials,” Menachem Elimelech, a corresponding author on the study and professor of civil and environmental engineering and chemical and biomolecular engineering at Rice, said in a news release. “It’s an exciting discovery with the potential to redefine how we handle some of our most intractable wastewater challenges.”

Virtual power plant from Houston-area company debuts at CES

Powering Up

Brookshire, Texas-based decentralized energy solution company AISPEX Inc. debuted its virtual power plant (VPP) platform, known as EnerVision, earlier this month at CES in Las Vegas.

EnerVision offers energy efficiency, savings and performance for residential, commercial and industrial users by combining state-of-the-art hardware with an AI-powered cloud platform. The VPP technology enables users to sell excess energy back to the grid during demand peaks.

AISPEX, or Advanced Integrated Systems for Power Exchange, has evolved from an EV charging solutions company into an energy systems innovator since it was founded in 2018. It focuses on integrating solar energy and decentralized systems to overcome grid limitations, reduce upgrade costs and accelerate electrification.

Regarding grid issues, the company hopes by leveraging decentralized solar power and Battery Energy Storage Systems (BESS), EnerVision can help bring energy generation closer to consumption, which can ease grid strain and enhance stability. EnerVision plans to do this by addressing “aging infrastructure, grid congestion, increasing electrification and the need for resilience against extreme weather and cyber threats,” according to the company.

One of the company's latest VPP products is SuperHub, which is an all-in-one charging station designed to combine components like solar panels, energy storage systems, fast EV chargers, mobile EV chargers and LCD display screens, into a unified, efficient solution.

“It supports clean energy generation and storage but also ensures seamless charging for electric vehicles while providing opportunities for communication or advertising through its built-in displays,” says Vivian Nie, a representative from AISPEX.

Also at CES, AISPEX displayed its REP Services, which offer flexible pricing, peak load management, and renewable energy options for end-to-end solutions, and its Integrated Systems, which combine solar power, battery storage, EV charging and LCD displays.

“We had the opportunity to meet new partners, reconnect with so many old friends, and dive into discussions about the future of e-mobility and energy solutions,” CEO Paul Nie said on LinkedIn.

In 2024, AISPEX installed its DC Fast chargers at two California Volkswagen locations.