automation station

University of Houston introduces robotics training programming for energy industry

UH is developing a wide range of robotics programming for the energy industry. Photo courtesy of University of Houston

Over the past 14 months, UH Energy at the University of Houston has developed a unique robotics training program for the energy industry.

UH Subsea Systems Institute and SPRINT Robotics teamed up to make the robotics-focused curriculum “Robotics in Energy,” which debuted in May. The two-day course offered hands-on training experience with innovative robotics technologies and attracted professionals from the oil and gas industry like participants from Chevron, and renewable energy sectors made up the 40 companies that were involved. The first day focused on topics like impact on business, safety and reliability, and risk analysis all within the spectrum of the energy industry. The second day of the course included a site tour at Sonardyne with instructor-led demonstrations of robotics technologies.

Wenyu Zuo, SSI coordinator of the robotics curriculum tells the University that he believes this will “address a critical workforce challenge.”

“The robotics program will help workforce development to give them robotic knowledge to help them to use robots to improve the quality, and in the future, the demand for remote operations- this is very important for current energy companies,” Zuo says.

The unique programming will prepare and upskill a workforce where robotics have a seat at the table. Photo via uh.edu

The Robotics in Energy class is the first of four modules in the robotics curriculum. The next courses are Robotics Foundation, Automation and Autonomy, and AI & the Vision for Integration, and are expected to be offered sometime later in 2023. Robotics Foundation will be a fundamentals of robotics course, Automation and Autonomy will aim to go in-depth on automation and robotics, and AI & the Vision for Integration,will look to “enhance integrity within energy operations” according to the official course descriptions.

While renewable energies and other energy innovations are being more accepted into the discourse among the industry, the UH Subsea Systems Institute saw an opening to integrate robotics as a new innovation for companies to consider.

“We are upscaling…we see the energy industry from an innovation perspective as very invested in certain things, but not very invested in this automation and robotics space, so it is quite needy “ says John Allen, adviser to the program who previously has experience as an executive at General Electric and Automation Machinery Manufacturing along with various other energy organizations.

When labor-intensive work conditions offshore provide some risk to the humans doing the job, robotics may work in the environment to get people out of “harm's way” and “automate” the work according to Allen.

For now, the workforce is the audience that they are targeting to help companies catch up with the technology, which the course hopes to evolve with.

“In the future, as the technology is developing , and robotics is rapidly developing technology, we want to keep it (the program) evolving year-by-year,” Zuo says on how Robotics in Energy may look going forward.

Trending News

A View From HETI

A View From UH

A Rice University professor studied the Earth's carbon cycle in the Rio Madre de Dios to shed light on current climate conditions. Photo courtesy of Mark Torres/Rice University

Carbon cycles through Earth, its inhabitants, and its atmosphere on a regular basis, but not much research has been done on that process and qualifying it — until now.

In a recent study of a river system extending from the Peruvian Andes to the Amazon floodplains, Rice University’s Mark Torres and collaborators from five institutions proved that that high rates of carbon breakdown persist from mountaintop to floodplain.

“The purpose of this research was to quantify the rate at which Earth naturally releases carbon dioxide into the atmosphere and find out whether this process varies across different geographic locations,” Torres says in a news release.

Torres published his findings in a study published in PNAS, explaining how they used rhenium — a silvery-gray, heavy transition metal — as a proxy for carbon. The research into the Earth’s natural, pre-anthropogenic carbon cycle stands to benefit humanity by providing valuable insight to current climate challenges.

“This research used a newly-developed technique pioneered by Robert Hilton and Mathieu Dellinger that relies on a trace element — rhenium — that’s incorporated in fossil organic matter,” Torres says. “As plankton die and sink to the bottom of the ocean, that dead carbon becomes chemically reactive in a way that adds rhenium to it.”

The research was done in the Rio Madre de Dios basin and supported by funding from a European Research Council Starting Grant, the European Union COFUND/Durham Junior Research Fellowship, and the National Science Foundation.

“I’m very excited about this tool,” Torres said. “Rice students have deployed this same method in our lab here, so now we can make this kind of measurement and apply it at other sites. In fact, as part of current research funded by the National Science Foundation, we are applying this technique in Southern California to learn how tectonics and climate influence the breakdown of fossil carbon.”

Torres also received a three-year grant from the Department of Energy to study soil for carbon storage earlier this year.

Trending News