UH is developing a wide range of robotics programming for the energy industry. Photo courtesy of University of Houston

Over the past 14 months, UH Energy at the University of Houston has developed a unique robotics training program for the energy industry.

UH Subsea Systems Institute and SPRINT Robotics teamed up to make the robotics-focused curriculum “Robotics in Energy,” which debuted in May. The two-day course offered hands-on training experience with innovative robotics technologies and attracted professionals from the oil and gas industry like participants from Chevron, and renewable energy sectors made up the 40 companies that were involved. The first day focused on topics like impact on business, safety and reliability, and risk analysis all within the spectrum of the energy industry. The second day of the course included a site tour at Sonardyne with instructor-led demonstrations of robotics technologies.

Wenyu Zuo, SSI coordinator of the robotics curriculum tells the University that he believes this will “address a critical workforce challenge.”

“The robotics program will help workforce development to give them robotic knowledge to help them to use robots to improve the quality, and in the future, the demand for remote operations- this is very important for current energy companies,” Zuo says.

The unique programming will prepare and upskill a workforce where robotics have a seat at the table. Photo via uh.edu

The Robotics in Energy class is the first of four modules in the robotics curriculum. The next courses are Robotics Foundation, Automation and Autonomy, and AI & the Vision for Integration, and are expected to be offered sometime later in 2023. Robotics Foundation will be a fundamentals of robotics course, Automation and Autonomy will aim to go in-depth on automation and robotics, and AI & the Vision for Integration,will look to “enhance integrity within energy operations” according to the official course descriptions.

While renewable energies and other energy innovations are being more accepted into the discourse among the industry, the UH Subsea Systems Institute saw an opening to integrate robotics as a new innovation for companies to consider.

“We are upscaling…we see the energy industry from an innovation perspective as very invested in certain things, but not very invested in this automation and robotics space, so it is quite needy “ says John Allen, adviser to the program who previously has experience as an executive at General Electric and Automation Machinery Manufacturing along with various other energy organizations.

When labor-intensive work conditions offshore provide some risk to the humans doing the job, robotics may work in the environment to get people out of “harm's way” and “automate” the work according to Allen.

For now, the workforce is the audience that they are targeting to help companies catch up with the technology, which the course hopes to evolve with.

“In the future, as the technology is developing , and robotics is rapidly developing technology, we want to keep it (the program) evolving year-by-year,” Zuo says on how Robotics in Energy may look going forward.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Wind and solar supplied over a third of ERCOT power, report shows

power report

Since 2023, wind and solar power have been the fastest-growing sources of electricity for the Electric Reliability Council of Texas (ERCOT) and increasingly are meeting stepped-up demand, according to a new report from the U.S. Energy Information Administration (EIA).

The report says utility-scale solar generated 50 percent more electricity for ERCOT in the first nine months this year compared with the same period in 2024. Meanwhile, electricity generated by wind power rose 4 percent in the first nine months of this year versus the same period in 2024.

Together, wind and solar supplied 36 percent of ERCOT’s electricity in the first nine months of 2025.

Heavier reliance on wind and solar power comes amid greater demand for ERCOT electricity. In the first nine months of 2025, ERCOT recorded the fastest growth in electricity demand (5 percent) among U.S. power grids compared with the same period last year, according to the report.

“ERCOT’s electricity demand is forecast to grow faster than that of any other grid operator in the United States through at least 2026,” the report says.

EIA forecasts demand for ERCOT electricity will climb 14 percent in the first nine months of 2026 compared with the same period this year. This anticipated jump coincides with a number of large data centers and cryptocurrency mining facilities coming online next year.

The ERCOT grid covers about 90 percent of Texas’ electrical load.

Micro-nuclear reactor to launch next year at Texas A&M innovation campus

nuclear pilot

The Texas A&M University System and Last Energy plan to launch a micro-nuclear reactor pilot project next summer at the Texas A&M-RELLIS technology and innovation campus in Bryan.

Washington, D.C.-based Last Energy will build a 5-megawatt reactor that’s a scaled-down version of its 20-megawatt reactor. The micro-reactor initially will aim to demonstrate safety and stability, and test the ability to generate electricity for the grid.

The U.S. Department of Energy (DOE) fast-tracked the project under its New Reactor Pilot Program. The project will mark Last Energy’s first installation of a nuclear reactor in the U.S.

Private funds are paying for the project, which Robert Albritton, chairman of the Texas A&M system’s board of regents, said is “an example of what’s possible when we try to meet the needs of the state and tap into the latest technologies.”

Glenn Hegar, chancellor of the Texas A&M system, said the 5-megawatt reactor is the kind of project the system had in mind when it built the 2,400-acre Texas A&M-RELLIS campus.

The project is “bold, it’s forward-looking, and it brings together private innovation and public research to solve today’s energy challenges,” Hegar said.

As it gears up to build the reactor, Last Energy has secured a land lease at Texas A&M-RELLIS, obtained uranium fuel, and signed an agreement with DOE. Founder and CEO Bret Kugelmass said the project will usher in “the next atomic era.”

In February, John Sharp, chancellor of Texas A&M’s flagship campus, said the university had offered land at Texas A&M-RELLIS to four companies to build small modular nuclear reactors. Power generated by reactors at Texas A&M-RELLIS may someday be supplied to the Electric Reliability Council of Texas (ERCOT) grid.

Also in February, Last Energy announced plans to develop 30 micro-nuclear reactors at a 200-acre site about halfway between Lubbock and Fort Worth.

Rice University partners with Australian co. to boost mineral processing, battery innovation

critical mineral partnership

Rice University and Australian mineral exploration company Locksley Resources have joined together in a research partnership to accelerate the development of antimony processing in the U.S. Antimony is a critical mineral used for defense systems, electronics and battery storage.

Rice and Locksley will work together to develop scalable methods for extracting and utilizing antimony. Currently, the U.S. relies on imports for nearly all refined antimony, according to Rice.

Locksley will fund the research and provide antimony-rich feedstocks and rare earth elements from a project in the Mojave Desert. The research will explore less invasive hydrometallurgical techniques for antimony extraction and explore antimony-based materials for use in batteries and other energy storage applications.

“This strategic collaboration with Rice marks a pivotal step in executing Locksley’s U.S. strategy,” Nathan Lude, chairman of Locksley Resources, said in a news release. “By fast-tracking our research program, we are helping rebuild downstream capacity through materials innovation that the country urgently requires.”

Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Materials Science and Nanoengineering at Rice, is the principal investigator of the project.

“Developing scalable, domestic pathways for antimony processing is not only a scientific and engineering challenge but also a national strategic priority,” Ajayan said in the news release. “By combining Rice’s expertise in advanced materials with Locksley’s resources, we can address a critical supply chain gap and build collaborations that strengthen U.S. energy resilience.”

The Rice Advanced Materials Institute (RAMI) will play a major role in supporting the advancement of technology and energy-storage applications.

“This partnership aligns with our mission to lead in materials innovations that address national priorities,” Lane Martin, director of RAMI, said in a news release. “By working with Locksley, we are helping to build a robust domestic supply chain for critical materials and support the advancement of next-generation energy technologies.”