The robots, developed by UH researchers, will provide a safer and more cost effective alternative to pipeline inspections, which are traditionally performed by human divers and require a great deal of time and money. Photo via UH.edu

Two professors at the University of Houston have developed an autonomous subsea vehicle that aims to decrease the number and severity of oil spills.

Known as SmartTouch technology, the Remote Operated Vehicles (ROVs) use smart touch sensors, video cameras and scanning sonars to inspect flange bolts in subsea pipelines, which are considered to lead to increased rates of leakage, according to a release from the university.

The ROVs, developed by UH's Zheng Chen and Gangbing Song, will provide a safer and more cost effective alternative to pipeline inspections, which are traditionally performed by human divers and require a great deal of time and money.

“By automating the inspection process with this state-of-the art robotic technology, we can dramatically reduce the cost and risk of these important subsea inspections which will lead to safer operations of offshore oil and gas pipelines as less intervention from human divers will be needed,” Chen, the Bill D. Cook Assistant Professor of Mechanical Engineering, said in a statement.

The technology will also be highly accurate in monitoring corrosion, which according to Song, the John and Rebecca Moores Professor of Mechanical Engineering, is responsible for most small leaks in subsea pipelines.

The project is funded by a $960,000 grant from the Bureau of Safety and Environmental Enforcement (BSEE), which is a part of the U.S. Department of the Interior. Chen and Song are also collaborating with Houston-based Oceaneering International on the development of the ROVs, which Oceaneering specializes in. Energy giant Chevron will evaluate the technology’s future commercialization, according to UH, and preliminary studies were funded by the university's Subsea Systems Institute.

Thus far, a prototype of the ROVs has been tested in Chen's lab at UH and in Galveston Bay. Experiments showed the technology's ability to inspect the looseness of subsea bolted connections, like flange bolts.

Chen and Song see other applications for their technology, as well.

"Ultimately, the project will push the boundaries of what can be accomplished by integrating robotics and structural health monitoring technologies," Chen added in the statement. "With proper implementation, the rate of subsea pipeline failure and related accidents will decrease, and subsea operations will be free to expand at a faster rate than before.”

Earlier this summer the UH Subsea Systems Institute and SPRINT Robotics teamed up to develop a robotics training program for the energy industry known as “Robotics in Energy.” The first of a series of two-day courses debuted in May and a subsequent course, Automation & Autonomy, will launch next month. Others are expected to be rolled out in the future as part of the university's Micro-Credentialing Programs in UH Energy.

Additionally Chevron and UH partnered up again last month to announce its inaugural cohort of UH-Chevron Energy Graduate Fellows.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

50+ teams announced for CERAWeek's annual clean tech pitch competition

CERA pitches

The Rice Alliance for Technology and Entrepreneurship, the Houston Energy Transition Initiative and the Texas Entrepreneurship Exchange for Energy announced the 30-plus energy ventures and five student teams that will pitch at the 2025 Energy Venture Day and Pitch Competition during CERAWeek next month.

The ventures are focused on driving efficiency and advancements toward the energy transition and will each present a 3.5-minute pitch before a network of investors and industry partners during CERAWeek's Agora program.

The pitch competition is divided up into the TEX-E university track, in which Texas student-led energy startups compete for $50,000 in cash prizes, and the industry ventures track.

Teams competing in the TEX-E Prize track include:

  • ECHO
  • HEXAspec
  • HydroStor Analytics
  • Nanoborne
  • Pattern Materials

The industry track is subdivided into three additional tracks, spanning materials to clean energy and will feature 36 companies. The top three companies from each industry track will be named. The winner of the CERAWeek competition will also have the chance to advance and compete for the $1 million investment prize at the Startup World Cup in October 2025.

Teams come from around the world, including several notable Houston-based ventures, such as Corrolytics, Rheom Materials, AtmoSpark Technologies, and others. Click here to see the full list of companies and investor groups that will participate.

The pitch competition will be held Wednesday, March 12, at CERAWeek from 1-4:30 pm. An Agora pass is required to attend.

Those without passes can catch more than 50 companies at a free pitch preview at the Ion. Pitches will be followed by private meetings with venture capitalists, corporate innovation groups, industry leaders, and tech scouts. The preview will be held Tuesday, March 11, from 9:30 am to 2:30 pm at the Ion. It's free to attend, but registration is required. Click here to register.

Last year, Houston-based Solidec took home the top TEX-E price and $25,000 cash awards. The startup extracts molecules from water and air, then transforms them into pure chemicals and fuels that are free of carbon emissions. Its co-founder and Rice University professor Haotian Wang was recently awarded the 2025 Norman Hackerman Award in Chemical Research.

Pioneering Houston professor earns prestigious 2025 Franklin Institute Award

medal winner

Rice University professor and nanoscience pioneer Naomi Halas has received the 2025 Benjamin Franklin Medal in Chemistry.

In addition to her role at Rice, Halas is co-founder and technical advisor of Syzygy Plasmonics, a Houston startup that relies on light instead of combustion as an energy source. This enables efficient, sustainable transformation of low-carbon ammonia into hydrogen when powered by renewable electricity.

Halas earned the Franklin Medal “for the creation and development of nanoshells — metal-coated nanoscale particles that can capture light energy — for use in many biomedical and chemical applications,” according to a release from Rice.

Halas’ work has pioneered insights into how light and matter interact at small scales, according to Rice. She joined Rice in 1989 to support the late Richard Smalley’s advancements in nanoscale science and technology.

“A lot of people were talking about nano like it was something completely new,” Halas said in the release. “But I realized it was really just chemistry viewed in a different way, and that really got me thinking about how I can combine the worlds of laser science and nanoscience.”

That shift in perspective led to the development of nanoparticles that spawned innovations in fields such as cancer therapy, water purification, and renewable energy.

“Naomi’s contributions to nanoscience have not only expanded the boundaries of our understanding but also transformed real-world applications in medicine, energy and beyond,” Rice President Reginald DesRoches added. “Her pioneering work on nanoshells exemplifies the spirit of innovation that defines Rice.”

One of Halas’ projects led to the founding of Syzygy, which develops light-driven, all-electric chemical reactors for inexpensive, sustainable production of hydrogen fuel. The company was named to was named to Fast Company's energy innovation list last year.

Halas is the first Rice faculty member to be elected to both the National Academy of Sciences and the National Academy of Engineering for research carried out at the university. She also has been elected to the National Academy of Inventors, the American Academy of Arts and Sciences, and the Royal Danish Academy of Science and Letters. Halas holds 30 patents in the fields of medicine, chemistry, physics and engineering.

The Franklin Medal is awarded by the Franklin Institute of Philadelphia. Many scientists who have received the award have gone on to win Nobel prizes.

As a recipient of the Franklin honor, Halas will receive a $10,000 honorarium and a 14-karat gold medal during an award ceremony May 1 in Philadelphia.