ribbon cutting

University of Houston opens new hydrocarbon center

UH cut the ribbon on a new hub for hydrocarbon exploration. Photo courtesy of UH

The University of Houston has officially opened the doors of a new hub for hydrocarbon exploration.

UH Energy recently unveiled its UH-DGH Center for Hydrocarbon Exploration, which is a partnership between the University of Houston and the technical arm of India’s Ministry of Petroleum and Natural Gas, Directorate General of Hydrocarbons, or DGH. The collaboration was announced in February.

The center will serve as a data center focused on India’s offshore basins, and its geoscience data to investigate production data and exploration.

"We have been thinking about this for multiple years, about how to get all this fantastic data that is there in the Directorate General of Hydrocarbons of India, use the repository of information that we have got and be able to showcase it to people in the United States where they've got the approach to go in and find oil and gas and other natural resources in ways that are perhaps truly unique and Texan in origin,” says Dr. Ramanan Krishnamoorthy, vice president of energy and innovation at UH during the event.

The event featured UH dignitaries, alum, and subject-matter experts like Rob Stewart, professor of geophysics, and David Hume, business development specialist and geoscience specialist, which included in-depth analysis of India basins that focused on geological and geophysical locations, physiographical and tectonic settings, the role of hydrocarbon elements, and other areas of interest.

The center is part of a five-year agreement to help generate reliable information on the energy industry with seismic, well, reservoir and production data being at the forefront.

“UH and India have been able to come together and bring this to reality, for us this is very inspirational,” says Pankaj Jain, Secretary, Ministry of Petroleum and Natural Gas, Government of India. “We think that we are actually planting a seed for something very, very good because the multiplier effects of this are going to be incredible.”

Strategically located in Houston, which many consider an “energy capital,” Jain is excited for a set of “fresh eyes” to look at the data.

“If you’re here [in Houston], you’re at the nucleus from where everything will evolve,” Jain says to the University of Houston.

Trending News

A View From HETI

A View From UH

A Rice University professor studied the Earth's carbon cycle in the Rio Madre de Dios to shed light on current climate conditions. Photo courtesy of Mark Torres/Rice University

Carbon cycles through Earth, its inhabitants, and its atmosphere on a regular basis, but not much research has been done on that process and qualifying it — until now.

In a recent study of a river system extending from the Peruvian Andes to the Amazon floodplains, Rice University’s Mark Torres and collaborators from five institutions proved that that high rates of carbon breakdown persist from mountaintop to floodplain.

“The purpose of this research was to quantify the rate at which Earth naturally releases carbon dioxide into the atmosphere and find out whether this process varies across different geographic locations,” Torres says in a news release.

Torres published his findings in a study published in PNAS, explaining how they used rhenium — a silvery-gray, heavy transition metal — as a proxy for carbon. The research into the Earth’s natural, pre-anthropogenic carbon cycle stands to benefit humanity by providing valuable insight to current climate challenges.

“This research used a newly-developed technique pioneered by Robert Hilton and Mathieu Dellinger that relies on a trace element — rhenium — that’s incorporated in fossil organic matter,” Torres says. “As plankton die and sink to the bottom of the ocean, that dead carbon becomes chemically reactive in a way that adds rhenium to it.”

The research was done in the Rio Madre de Dios basin and supported by funding from a European Research Council Starting Grant, the European Union COFUND/Durham Junior Research Fellowship, and the National Science Foundation.

“I’m very excited about this tool,” Torres said. “Rice students have deployed this same method in our lab here, so now we can make this kind of measurement and apply it at other sites. In fact, as part of current research funded by the National Science Foundation, we are applying this technique in Southern California to learn how tectonics and climate influence the breakdown of fossil carbon.”

Torres also received a three-year grant from the Department of Energy to study soil for carbon storage earlier this year.

Trending News