A new report from the U.S. Energy Information Administration shows that wind and solar supplied more than 30 percent of ERCOT’s electricity in the first nine months of 2025. Photo via Unsplash.

Since 2023, wind and solar power have been the fastest-growing sources of electricity for the Electric Reliability Council of Texas (ERCOT) and increasingly are meeting stepped-up demand, according to a new report from the U.S. Energy Information Administration (EIA).

The report says utility-scale solar generated 50 percent more electricity for ERCOT in the first nine months this year compared with the same period in 2024. Meanwhile, electricity generated by wind power rose 4 percent in the first nine months of this year versus the same period in 2024.

Together, wind and solar supplied 36 percent of ERCOT’s electricity in the first nine months of 2025.

Heavier reliance on wind and solar power comes amid greater demand for ERCOT electricity. In the first nine months of 2025, ERCOT recorded the fastest growth in electricity demand (5 percent) among U.S. power grids compared with the same period last year, according to the report.

“ERCOT’s electricity demand is forecast to grow faster than that of any other grid operator in the United States through at least 2026,” the report says.

EIA forecasts demand for ERCOT electricity will climb 14 percent in the first nine months of 2026 compared with the same period this year. This anticipated jump coincides with a number of large data centers and cryptocurrency mining facilities coming online next year.

The ERCOT grid covers about 90 percent of Texas’ electrical load.

A new report from the Department of Energy says the risk of power blackouts will be 100 times greater in 2030. Photo via Getty Images.

DOE report warns of widespread power blackouts by 2030 amid grid challenges

grid report

Scheduled retirements of traditional power plants, dependence on energy sources like wind and solar, and the growth of energy-gobbling data centers put the U.S. — including Texas — at much greater risk of massive power outages just five years from now, a new U.S. Department of Energy report suggests.

The report says the U.S. power grid won’t be able to sustain the combined impact of plant closures, heavy reliance on renewable energy, and the boom in data center construction. As a result, the risk of power blackouts will be 100 times greater in 2030, according to the report.

“The status quo of more [plant] retirements and less dependable replacement generation is neither consistent with winning the AI race and ensuring affordable energy for all Americans, nor with continued grid reliability … . Absent intervention, it is impossible for the nation’s bulk power system to meet the AI growth requirements while maintaining a reliable power grid and keeping energy costs low for our citizens,” the report says.

Avoiding planned shutdowns of traditional energy plants, such as those fueled by coal and oil, would improve grid reliability, but a shortfall would still persist in the territory served by the Electric Reliability Council of Texas (ERCOT), particularly during the winter, the report says. ERCOT operates the power grid for the bulk of Texas.

According to the report, 104 gigawatts of U.S. power capacity from traditional plants is set to be phased out by 2030. “This capacity is not being replaced on a one-to-one basis,” says the report, “and losing this generation could lead to significant outages when weather conditions do not accommodate wind and solar generation.”

To meet reliability targets, ERCOT would need 10,500 megawatts of additional “perfect” capacity by 2030, the report says. Perfect capacity refers to maximum power output under ideal conditions.

“ERCOT continues to undergo rapid change, and supply additions will have a difficult time keeping up with demand growth,” Brent Nelson, managing director of markets and strategy at Ascend Analytics, a provider of data and analytics for the energy sector, said in a release earlier this summer. “With scarcity conditions ongoing and weather-dependent, expect a volatile market with boom years and bust years.”
A new study puts Texas at No. 2 among the states most at risk for power outages this summer. Photo via Getty Images

Texas plugs in among states at highest risk for summer power outages in 2025

by the numbers

Warning: Houston could be in for an especially uncomfortable summer.

A new study from solar energy company Wolf River Electric puts Texas at No. 2 among the states most at risk for power outages this summer. Michigan tops the list.

Wolf River Electric analyzed the number of large-scale outages that left more than 5,000 utility customers, including homes, stores and schools, without summertime electricity from 2019 to 2023. During that period, Texas experienced 7,164 summertime power outages.

Despite Michigan being hit with more summertime outages, Texas led the list of states with the most hours of summertime power outages — an annual average of 35,440. That works out to 1,477 days. “This means power cuts in Texas tend to last longer, making summer especially tough for residents and businesses,” the study says.

The Electric Reliability Council of Texas (ERCOT), which operates the electric grid serving 90 percent of the state, predicts its system will set a monthly record for peak demand this August — 85,759 megawatts. That would exceed the current record of 85,508 megawatts, dating back to August 2023.

In 2025, natural gas will account for 37.7 percent of ERCOT’s summertime power-generating capacity, followed by wind (22.9 percent) and solar (19 percent), according to an ERCOT fact sheet.

This year, ERCOT expects four months to surpass peak demand of 80,000 megawatts:

  • June 2025 — 82,243 megawatts
  • July 2025 — 84,103 megawatts
  • August 2025 — 85,759 megawatts
  • September 2025 — 80,773 megawatts

One megawatt is enough power to serve about 250 residential customers amid peak demand, according to ERCOT. Using that figure, the projected peak of 85,759 megawatts in August would supply enough power to serve more than 21.4 million residential customers in Texas.

Data centers, artificial intelligence and population growth are driving up power demand in Texas, straining the ERCOT grid. In January, ERCOT laid out a nearly $33 billion plan to boost power transmission capabilities in its service area.
CenterPoint has partnered with Atlanta-based Osmose and Australia-based Neara to use AI-powered predictive modeling to inform decisions on restorations and risk. Photo via Getty Images

CenterPoint partners with AI and infrastructure companies to boost reliability

power partnership

Houston utilities giant CenterPoint is partnering with companies from Atlanta and Australia to use AI to increase data accuracy and strengthen the power grid.

The partnership is part of a collaboration between AI-powered predictive modeling platform company Neara and utility infrastructure asset assessment solutions company Osmose, according to a news release.

Last year, CenterPoint Energy announced an agreement with Neara for engineering-grade simulations and analytics and to deploy Neara’s AI capabilities across CenterPoint’s Greater Houston service area. Now, Neaera will work with Osmose to give energy providers like CenterPoint more up-to-date data to inform decisions on restorations and risks.

CenterPoint Energy is already using the partnership's tools to improve network reliability and enhance its storm preparedness.

"At CenterPoint Energy, we are focused every day on building the most resilient coastal grid in the nation and increasing the resiliency of the communities we are privileged to serve," Eric Easton, VP of Grid Transformation at CenterPoint Energy, said in a news release.

According to Osmose, its services to CenterPoint can result in repair cost savings of up to 70 percent and boost restoration times by up to 80 percent. Osmose also said its services assist with being 25 percent better at ensuring the most critical repairs happen first.

"By integrating Neara's AI-driven modeling with our industry-leading field services, we're giving utilities a powerful tool to make smarter, more data-driven decisions," Mike Adams, CEO of Osmose, said in a news release. "Accurate asset data is the foundation for a resilient grid, and this partnership provides the precision needed to maximize reliability and performance."

Ultimately, the companies say the partnership aims to help minimize disruptions and improve reliability for CenterPoint customers.

"As we work to leverage technology to deliver better outcomes for our customers, we're continuing to enhance our advanced modeling capabilities, which includes collaborating with cutting-edge technology providers like Neara and Osmose,” Easton added in the release.

D.C.-based Last Energy plans to bring 30 micro-nuclear reactors in Texas online within the next two years. Rending courtesy Last Energy.

Energy co. to build 30 micro-nuclear reactors in Texas to meet rising demand

going nuclear

A Washington, D.C.-based developer of micro-nuclear technology plans to build 30 micro-nuclear reactors near Abilene to address the rising demand for electricity to operate data centers across Texas.

The company, Last Energy, is seeking permission from the Electric Reliability Council of Texas (ERCOT) and the U.S. Nuclear Regulatory Commission to build the microreactors on a more than 200-acre site in Haskell County, about 60 miles north of Abilene.

The privately financed microreactors are expected to go online within roughly two years. They would be connected to ERCOT’s power grid, which serves the bulk of Texas.

“Texas is America’s undisputed energy leader, but skyrocketing population growth and data center development is forcing policymakers, customers, and energy providers to embrace new technologies,” says Bret Kugelmass, founder and CEO of Last Energy.

“Nuclear power is the most effective way to meet Texas’ demand, but our solution—plug-and-play microreactors, designed for scalability and siting flexibility—is the best way to meet it quickly,” Kugelmass adds. “Texas is a state that recognizes energy is a precondition for prosperity, and Last Energy is excited to contribute to that mission.”

Texas is home to more than 340 data centers, according to Perceptive Power Infrastructure. These centers consume nearly 8 gigawatts of power and make up 9 percent of the state’s power demand.

Data centers are one of the most energy-intensive building types, says to the U.S. Department of Energy, and account for approximately 2 percent of the total U.S. electricity use.

Microreactors are 100 to 1,000 times smaller than conventional nuclear reactors, according to the Idaho National Laboratory. Yet each Last Energy microreactor can produce 20 megawatts of thermal energy.

Before announcing the 30 proposed microreactors to be located near Abilene, Last Energy built two full-scale prototypes in Texas in tandem with manufacturing partners. The company has also held demonstration events in Texas, including at CERAWeek 2024 in Houston. Last Energy, founded in 2019, is a founding member of the Texas Nuclear Alliance.

“Texas is the energy capital of America, and we are working to be No. 1 in advanced nuclear power,” Governor Greg Abbott said in a statement. “Last Energy’s microreactor project in Haskell County will help fulfill the state’s growing data center demand. Texas must become a national leader in advanced nuclear energy. By working together with industry leaders like Last Energy, we will usher in a nuclear power renaissance in the United States.”

Nuclear energy is not a major source of power in Texas. In 2023, the state’s two nuclear power plants generated about 7% of the state’s electricity, according to the U.S. Energy Information Administration. Texas gains most of its electricity from natural gas, coal, wind, and solar.

A new coalition of energy leaders wants to “take the Texas grid from good to great." Photo via Getty Images

Houston energy leaders form new coalition to improve Texas power grid

grid tech

A Houston-based coalition that launched this month aims to educate Texas officials about technology designed to shore up the state’s power grid.

The public-private Texas Reliability Coalition says it will promote utility-scale microgrid technology geared toward strengthening the resilience and reliability of the Texas power grid, particularly during extreme weather.

A utility-operated microgrid is a group of interconnected power loads and distributed energy sources that can operate in tandem with or apart from regular power grids, such as the grid run by the Electric Reliability Council of Texas (ERCOT). Legislation passed in 2023 enables the use of utility-scale microgrid technology in Texas’ deregulated energy market, according to the coalition.

John Elder, executive director of the coalition, says that with the legal framework now in place, the Public Utility Commission of Texas and ERCOT need to create rules to establish the Texas marketplace for microgrid technology. The goal, he says, is to “take the Texas grid from good to great” by installing microgrid technology, improving the infrastructure, and strengthening the system — all targeted toward meeting power needs during extreme weather and amid growing demand.

Houston-based CenterPoint Energy will test the utility-scale microgrid technology being promoted by the coalition. In a January 31 filing with the Public Utility Commission, CenterPoint says microgrid technology will be featured in a $36.5 million pilot program that’ll set up an estimated three to five microgrids in the company’s service area. The pilot program is slated to last from 2026 to 2028.

In the public affairs arena, five Houston executives are leading the new reliability commission’s microgrid initiative.

Elder, one of the coalition’s founding members, is president and CEO of Houston-based Acclaim Energy. Other founders include Ember Real Estate Investment & Development, Park Eight Development, and PowerSecure. Ember and Park Eight are based in Houston. Durham, North Carolina-based PowerSecure, which produces microgrid technology, is a subsidiary of energy provider Southern Co.

Aside from Elder, members of the coalition’s board are:

  • Stewart Black, board secretary of the coalition and vice president of Acclaim Energy’s midstream division
  • Todd Burrer, president of municipal utility districts at Inframark.
  • Harry Masterson, managing principal of Ember
  • Martin Narendorf, former vice president at CenterPoint Energy.
Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

What EPA’s carbon capture and storage permitting announcement means for Texas

The View From HETI

Earlier this month, Texas was granted authority by the federal government for permitting carbon capture and storage (CCS) projects. This move could help the U.S. cut emissions while staying competitive in the global energy game.

In June, the U.S. Environmental Protection Agency (EPA) proposed approving Texas’ request for permitting authority under the Safe Drinking Water Act (SDWA) for Class VI underground injection wells for carbon capture and storage (CCS) in the state under a process called “primacy.” The State of Texas already has permitting authority for other injection wells (Classes I-V). In November, the EPA announced final approval of Texas’ primacy request.

Why This Matters for Texas

Texas is the headquarters for virtually every segment of the energy industry. According to the U.S. Energy Information Administration, Texas is the top crude oil- and natural-gas producing state in the nation. The state has more crude oil refineries and refining capacity than any other state in the nation. Texas produces more electricity than any other state, and the demand for electricity will grow with the development of data centers and artificial intelligence (AI). Simply put, Texas is the backbone of the nation’s energy security and competitiveness. For the nation’s economic competitiveness, it is important that Texas continue to produce more energy with less emissions. CCS is widely regarded as necessary to continue to lower the emissions intensity of the U.S. industrial sector for critical products including power generation, refining, chemicals, steel, cement and other products that our country and world demand.

The Greater Houston Partnership’s Houston Energy Transition Initiative (HETI) has supported efforts to bring CCUS to a broader commercial scale since the initiative’s inception.

“Texas is uniquely positioned to deploy CCUS at scale, with world-class geology, a skilled workforce, and strong infrastructure. We applaud the EPA for granting Texas the authority to permit wells for CCUS, which we believe will result in safe and efficient permitting while advancing technologies that strengthen Texas’ leadership in the global energy market,” said Jane Stricker, Executive Director of HETI and Senior Vice President, Energy Transition at the Greater Houston Partnership.

What is Primacy, and Why is it Important?

Primacy grants permitting authority for Class VI wells for CCS to the Texas Railroad Commission instead of the EPA. Texas is required to follow the same strict standards the EPA uses. The EPA has reviewed Texas’ application and determined it meets those requirements.

Research suggests that Texas has strong geological formations for CO2 storage, a world-class, highly skilled workforce, and robust infrastructure primed for the deployment of CCS. However, federal permitting delays are stalling billions of dollars of private sector investment. There are currently 257 applications under review, nearly one-quarter of which are located in Texas, with some applications surpassing the EPA’s target review period of 24 months. This creates uncertainty for developers and investors and keeps thousands of potential jobs out of reach. By transferring permitting to the state, Texas will apply local resources to issue Class VI permits across the states in a timely manner.

Texas joins North Dakota, Wyoming, Louisiana, West Virginia and Arizona with the authority for regulating Class VI wells.

Is CCS safe?

A 2025 study by Texas A&M University reviewed operational history and academic literature on CCS in the United States. The study analyzed common concerns related to CCS efficacy and safety and found that CCS reduces pollutants including carbon dioxide, particulate matter, sulfur oxides and nitrogen oxides. The research found that the risks of CCS present a low probability of impacting human life and can be effectively managed through existing state and federal regulations and technical monitoring and safety protocols.

What’s Next?

The final rule granting Texas’ primacy will become effective 30 days after publication in the Federal Register. Once in effect, the Texas Railroad Commission will be responsible for permitting wells for carbon capture, use and storage and enforcing their safe operation.

———

This article originally ran on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.

Houston energy expert: How the U.S. can turn carbon into growth

Guets Column

For the past 40 years, climate policy has often felt like two steps forward, one step back. Regulations shift with politics, incentives get diluted, and long-term aspirations like net-zero by 2050 seem increasingly out of reach. Yet greenhouse gases continue to rise, and the challenges they pose are not going away.

This matters because the costs are real. Extreme weather is already straining U.S. power grids, damaging homes, and disrupting supply chains. Communities are spending more on recovery while businesses face rising risks to operations and assets. So, how can the U.S. prepare and respond?

The Baker Institute Center for Energy Studies (CES) points to two complementary strategies. First, invest in large-scale public adaptation to protect communities and infrastructure. Second, reframe carbon as a resource, not just a waste stream to be reduced.

Why Focusing on Emissions Alone Falls Short

Peter Hartley argues that decades of global efforts to curb emissions have done little to slow the rise of CO₂. International cooperation is difficult, the costs are felt immediately, and the technologies needed are often expensive. Emissions reduction has been the central policy tool for decades, and it has been neither sufficient nor effective.

One practical response is adaptation, which means preparing for climate impacts we can’t avoid. Some of these measures are private, taken by households or businesses to reduce their own risks, such as farmers shifting crop types, property owners installing fire-resistant materials, or families improving insulation. Others are public goods that require policy action. These include building stronger levees and flood defenses, reinforcing power grids, upgrading water systems, revising building codes, and planning for wildfire risks. Such efforts protect people today while reducing long-term costs, and they work regardless of the source of extreme weather. Adaptation also does not depend on global consensus; each country, state, or city can act in its own interest. Many of these measures even deliver benefits beyond weather resilience, such as stronger infrastructure and improved security against broader threats.

McKinsey research reinforces this logic. Without a rapid scale-up of climate adaptation, the U.S. will face serious socioeconomic risks. These include damage to infrastructure and property from storms, floods, and heat waves, as well as greater stress on vulnerable populations and disrupted supply chains.

Making Carbon Work for Us

While adaptation addresses immediate risks, Ken Medlock points to a longer-term opportunity: turning carbon into value.

Carbon can serve as a building block for advanced materials in construction, transportation, power transmission, and agriculture. Biochar to improve soils, carbon composites for stronger and lighter products, and next-generation fuels are all examples. As Ken points out, carbon-to-value strategies can extend into construction and infrastructure. Beyond creating new markets, carbon conversion could deliver lighter and more resilient materials, helping the U.S. build infrastructure that is stronger, longer-lasting, and better able to withstand climate stress.

A carbon-to-value economy can help the U.S. strengthen its manufacturing base and position itself as a global supplier of advanced materials.

These solutions are not yet economic at scale, but smart policies can change that. Expanding the 45Q tax credit to cover carbon use in materials, funding research at DOE labs and universities, and supporting early markets would help create the conditions for growth.

Conclusion

Instead of choosing between “doing nothing” and “net zero at any cost,” we need a third approach that invests in both climate resilience and carbon conversion.

Public adaptation strengthens and improves the infrastructure we rely on every day, including levees, power grids, water systems, and building standards that protect communities from climate shocks. Carbon-to-value strategies can complement these efforts by creating lighter, more resilient carbon-based infrastructure.

CES suggests this combination is a pragmatic way forward. As Peter emphasizes, adaptation works because it is in each nation’s self-interest. And as Ken reminds us, “The U.S. has a comparative advantage in carbon. Leveraging it to its fullest extent puts the U.S. in a position of strength now and well into the future.”

-----------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally appeared on LinkedIn.

UH launches new series on AI’s impact on the energy sector

where to be

The University of Houston's Energy Transition Institute has launched a new Energy in Action Seminar Series that will feature talks focused on the intersection of the energy industry and digitization trends, such as AI.

The first event in the series took place earlier this month, featuring Raiford Smith, global market lead for power & energy for Google Cloud, who presented "AI, Energy, and Data Centers." The talk discussed the benefits of widespread AI adoption for growth in traditional and low-carbon energy resources.

Future events include:

“Through this timely and informative seminar series, ETI will bring together energy professionals, researchers, students, and anyone working in or around digital innovation in energy," Debalina Sengupta, chief operating officer of ETI, said in a news release. "We encourage industry members and students to register now and reap the benefits of participating in both the seminar and the reception, which presents a fantastic opportunity to stay ahead of industry developments and build a strong network in the Greater Houston energy ecosystem.”

The series is slated to continue throughout 2026. Each presentation is followed by a one-hour networking reception. Register for the next event here.