Texas's evolving energy landscape means affordability for residents, a new report finds. Photo via Pexels

The Lone Star State is an economical option when it comes to energy costs, one report has found.

WalletHub, a personal finance website, analyzed energy affordability across the 50 states in its new report, Energy Costs by State in 2024, which looked at residential energy types: electricity, natural gas, motor fuel and home heating oil.

Texas ranked as the fourth cheapest state for energy, or No. 47 in the report that sorted by most expensive average monthly energy bill. Texans' average energy cost per month is $437, the report found.


Source: WalletHub

Here's how Texas ranked in key categories, with No. 1 being the most expensive and No. 50 being the cheapest:

  • No. 27 – price of electricity
  • No. 15 – price of natural gas
  • No. 44 – natural-gas consumption per consumer
  • No. 40 – price of motor fuel
  • No. 16 – motor-fuel consumption per driver
  • No. 49 – home heating-oil consumption per consumer

With the most expensive state — Wyoming — being over four times the cost compared to the cheapest state — New Mexico, the difference between energy costs between states varies greatly, but the reason for that isn't exactly a mystery.

“Energy prices vary from state to state based on several factors including energy sources, supply and demand, energy regulation, regulatory authorities, competition, and the free market," explains expert Justin Perryman, a professor at Washington University School of Law. "[States] such as Texas have a deregulated electricity marketplace. Missouri and 17 other states have a regulated energy market. In deregulated markets there are typically more energy providers which often leads to more competition and lower prices; however, other factors can contribute to energy prices.

"In regulated markets, the state energy regulatory authority sets the prices of energy," he continues. "It can be politically unpopular to raise energy costs, so those states may benefit from lower energy costs. Factors such as the state’s commitment to renewable energy may also factor into energy costs. Proximity to less expensive energy sources can lower energy costs.”

Texas's evolving energy landscape has been well documented, and earlier this year the state's solar energy generation surpassed the output by coal, according to a report from the Institute For Energy Economics and Financial Analysis.

A separate report found that, when compared to other states, Texas will account for the biggest share of new utility-scale solar capacity and new battery storage capacity in 2024. According to the U.S. Energy Information Administration, the state will make up 35 percent of new utility-scale solar capacity in the U.S. this year.

It might only be Texas' grass that is green. Photo via Getty Images

Here's how Texas ranks among the greenest states

zooming in

Turns out — Texas might not be as green as you thought.

A new report from WalletHub looked at 25 key metrics — from green buildings per capita to energy consumption from renewable resources — to evaluate the current health of states' environment and residents’ environmental-friendliness. Texas ranked No. 38, meaning it was the thirteenth least green state, only scoring 50.40 points out of 100.

“It’s important for every American to do their part to support greener living and protect our environment. However, it’s much easier being green in some states than others," writes Cassandra Happe, a WalletHub Analyst, in the report. "For example, if a state doesn’t have a great infrastructure for alternative-fuel vehicles, it becomes much harder for residents to adopt that technology. Living in a green state is also very beneficial for the health of you and your family, as you benefit from better air, soil and water quality.”

Here's how Texas ranked among a few of the key metrics:

  • No. 35 for air quality
  • No. 38 for soil quality
  • No. 38 for water quality
  • No. 26 for LEED-certified buildings per capita
  • No. 32 for percent of renewable energy consumption
  • No. 45 for energy consumption per capita
  • No. 38 for gasoline consumption (in gallons) per capita
Despite Texas' solar energy generation surpassed the output by coal last month, according to a report from the Institute For Energy Economics and Financial Analysis, the Lone Star State has room for improvement.
California was ranked as the greenest state, with Vermont, New York, Maryland, and Washington, respectively, rounding out the top five. The country's least green state is West Virginia, followed by Louisiana, Alabama, Mississippi, and Kentucky.

The report also zeroed in on how politics play into a state's climate system. Democrat-led states ranked around No. 15 on average, whereas Republican states fell at around No. 36.


Source: WalletHub
If you live in Texas, you're paying less than residents in almost every other state. Photo via Getty Images

Report ranks Texas as among least expensive states for energy

cha-ching

A new report analyzed energy costs across the United States to find out what states had the highest energy prices. Turns out, Texas falls rather low on that list.

The study from WalletHub ranked Texas as No. 49 on the list of the 2023 Most Energy-Expensive States. According to the U.S. Energy Information Administration, almost a third (27 percent) of the country report having difficulty meeting the energy needs of their household.

"To better understand the impact of energy on our finances relative to our location and consumption habits, WalletHub compared the total monthly energy bills in each of the 50 states and the District of Columbia," reads the report. "Our analysis uses a special formula that accounts for the following residential energy types: electricity, natural gas, motor fuel and home heating oil."

The report ranked states based on their total monthly energy cost, but also identified the following:

  • Monthly electricity cost
  • Monthly natural-gas cost
  • Monthly motor-fuel cost
  • Monthly home heating-oil cost
Texas households' total monthly energy cost was reportedly $378, which is only beat by New Mexico ($373) and DC ($274). The top five most expensive states for monthly energy cost is as follows.
  1. Wyoming at $845
  2. North Dakota at $645
  3. Alaska at $613
  4. Connecticut at $593
  5. Massachusetts at $589
When comparing to other states, Texas monthly electricity costs are relatively high. At $153 a month, the Lone Star State ranks No. 11 in that category. Meanwhile, when it comes to monthly home heating-oil cost, Texans pay an average of $0 a month, as do Mississippi residents.
Fuel prices are also cheaper in Texas, as the state ranks No. 49 with only Louisiana and Mississippi with lower costs, respectively.

While Texans can find some comfort in the lower-than-average energy costs, the whole country is expected to see some prices increase, one of the report's experts says.

"Most likely, energy prices will continue to rise in 2023, although perhaps more slowly than at times in the past," writes Peter C. Burns, director of the Center for Sustainable Energy at Notre Dame. "The war in Ukraine continues to create uncertainty in energy supplies in Europe, while pledges to reduce oil production in the interests of reducing greenhouse gas emissions will also contribute to increasing prices."


Source: WalletHub
Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

What EPA’s carbon capture and storage permitting announcement means for Texas

The View From HETI

Earlier this month, Texas was granted authority by the federal government for permitting carbon capture and storage (CCS) projects. This move could help the U.S. cut emissions while staying competitive in the global energy game.

In June, the U.S. Environmental Protection Agency (EPA) proposed approving Texas’ request for permitting authority under the Safe Drinking Water Act (SDWA) for Class VI underground injection wells for carbon capture and storage (CCS) in the state under a process called “primacy.” The State of Texas already has permitting authority for other injection wells (Classes I-V). In November, the EPA announced final approval of Texas’ primacy request.

Why This Matters for Texas

Texas is the headquarters for virtually every segment of the energy industry. According to the U.S. Energy Information Administration, Texas is the top crude oil- and natural-gas producing state in the nation. The state has more crude oil refineries and refining capacity than any other state in the nation. Texas produces more electricity than any other state, and the demand for electricity will grow with the development of data centers and artificial intelligence (AI). Simply put, Texas is the backbone of the nation’s energy security and competitiveness. For the nation’s economic competitiveness, it is important that Texas continue to produce more energy with less emissions. CCS is widely regarded as necessary to continue to lower the emissions intensity of the U.S. industrial sector for critical products including power generation, refining, chemicals, steel, cement and other products that our country and world demand.

The Greater Houston Partnership’s Houston Energy Transition Initiative (HETI) has supported efforts to bring CCUS to a broader commercial scale since the initiative’s inception.

“Texas is uniquely positioned to deploy CCUS at scale, with world-class geology, a skilled workforce, and strong infrastructure. We applaud the EPA for granting Texas the authority to permit wells for CCUS, which we believe will result in safe and efficient permitting while advancing technologies that strengthen Texas’ leadership in the global energy market,” said Jane Stricker, Executive Director of HETI and Senior Vice President, Energy Transition at the Greater Houston Partnership.

What is Primacy, and Why is it Important?

Primacy grants permitting authority for Class VI wells for CCS to the Texas Railroad Commission instead of the EPA. Texas is required to follow the same strict standards the EPA uses. The EPA has reviewed Texas’ application and determined it meets those requirements.

Research suggests that Texas has strong geological formations for CO2 storage, a world-class, highly skilled workforce, and robust infrastructure primed for the deployment of CCS. However, federal permitting delays are stalling billions of dollars of private sector investment. There are currently 257 applications under review, nearly one-quarter of which are located in Texas, with some applications surpassing the EPA’s target review period of 24 months. This creates uncertainty for developers and investors and keeps thousands of potential jobs out of reach. By transferring permitting to the state, Texas will apply local resources to issue Class VI permits across the states in a timely manner.

Texas joins North Dakota, Wyoming, Louisiana, West Virginia and Arizona with the authority for regulating Class VI wells.

Is CCS safe?

A 2025 study by Texas A&M University reviewed operational history and academic literature on CCS in the United States. The study analyzed common concerns related to CCS efficacy and safety and found that CCS reduces pollutants including carbon dioxide, particulate matter, sulfur oxides and nitrogen oxides. The research found that the risks of CCS present a low probability of impacting human life and can be effectively managed through existing state and federal regulations and technical monitoring and safety protocols.

What’s Next?

The final rule granting Texas’ primacy will become effective 30 days after publication in the Federal Register. Once in effect, the Texas Railroad Commission will be responsible for permitting wells for carbon capture, use and storage and enforcing their safe operation.

———

This article originally ran on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.

Houston energy expert: How the U.S. can turn carbon into growth

Guets Column

For the past 40 years, climate policy has often felt like two steps forward, one step back. Regulations shift with politics, incentives get diluted, and long-term aspirations like net-zero by 2050 seem increasingly out of reach. Yet greenhouse gases continue to rise, and the challenges they pose are not going away.

This matters because the costs are real. Extreme weather is already straining U.S. power grids, damaging homes, and disrupting supply chains. Communities are spending more on recovery while businesses face rising risks to operations and assets. So, how can the U.S. prepare and respond?

The Baker Institute Center for Energy Studies (CES) points to two complementary strategies. First, invest in large-scale public adaptation to protect communities and infrastructure. Second, reframe carbon as a resource, not just a waste stream to be reduced.

Why Focusing on Emissions Alone Falls Short

Peter Hartley argues that decades of global efforts to curb emissions have done little to slow the rise of CO₂. International cooperation is difficult, the costs are felt immediately, and the technologies needed are often expensive. Emissions reduction has been the central policy tool for decades, and it has been neither sufficient nor effective.

One practical response is adaptation, which means preparing for climate impacts we can’t avoid. Some of these measures are private, taken by households or businesses to reduce their own risks, such as farmers shifting crop types, property owners installing fire-resistant materials, or families improving insulation. Others are public goods that require policy action. These include building stronger levees and flood defenses, reinforcing power grids, upgrading water systems, revising building codes, and planning for wildfire risks. Such efforts protect people today while reducing long-term costs, and they work regardless of the source of extreme weather. Adaptation also does not depend on global consensus; each country, state, or city can act in its own interest. Many of these measures even deliver benefits beyond weather resilience, such as stronger infrastructure and improved security against broader threats.

McKinsey research reinforces this logic. Without a rapid scale-up of climate adaptation, the U.S. will face serious socioeconomic risks. These include damage to infrastructure and property from storms, floods, and heat waves, as well as greater stress on vulnerable populations and disrupted supply chains.

Making Carbon Work for Us

While adaptation addresses immediate risks, Ken Medlock points to a longer-term opportunity: turning carbon into value.

Carbon can serve as a building block for advanced materials in construction, transportation, power transmission, and agriculture. Biochar to improve soils, carbon composites for stronger and lighter products, and next-generation fuels are all examples. As Ken points out, carbon-to-value strategies can extend into construction and infrastructure. Beyond creating new markets, carbon conversion could deliver lighter and more resilient materials, helping the U.S. build infrastructure that is stronger, longer-lasting, and better able to withstand climate stress.

A carbon-to-value economy can help the U.S. strengthen its manufacturing base and position itself as a global supplier of advanced materials.

These solutions are not yet economic at scale, but smart policies can change that. Expanding the 45Q tax credit to cover carbon use in materials, funding research at DOE labs and universities, and supporting early markets would help create the conditions for growth.

Conclusion

Instead of choosing between “doing nothing” and “net zero at any cost,” we need a third approach that invests in both climate resilience and carbon conversion.

Public adaptation strengthens and improves the infrastructure we rely on every day, including levees, power grids, water systems, and building standards that protect communities from climate shocks. Carbon-to-value strategies can complement these efforts by creating lighter, more resilient carbon-based infrastructure.

CES suggests this combination is a pragmatic way forward. As Peter emphasizes, adaptation works because it is in each nation’s self-interest. And as Ken reminds us, “The U.S. has a comparative advantage in carbon. Leveraging it to its fullest extent puts the U.S. in a position of strength now and well into the future.”

-----------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally appeared on LinkedIn.

UH launches new series on AI’s impact on the energy sector

where to be

The University of Houston's Energy Transition Institute has launched a new Energy in Action Seminar Series that will feature talks focused on the intersection of the energy industry and digitization trends, such as AI.

The first event in the series took place earlier this month, featuring Raiford Smith, global market lead for power & energy for Google Cloud, who presented "AI, Energy, and Data Centers." The talk discussed the benefits of widespread AI adoption for growth in traditional and low-carbon energy resources.

Future events include:

“Through this timely and informative seminar series, ETI will bring together energy professionals, researchers, students, and anyone working in or around digital innovation in energy," Debalina Sengupta, chief operating officer of ETI, said in a news release. "We encourage industry members and students to register now and reap the benefits of participating in both the seminar and the reception, which presents a fantastic opportunity to stay ahead of industry developments and build a strong network in the Greater Houston energy ecosystem.”

The series is slated to continue throughout 2026. Each presentation is followed by a one-hour networking reception. Register for the next event here.