The Carbon to Value Initiative kicks off this week at Greentown Houston. Photo via GreentownLabs.com

A carbon innovation initiative in collaboration with Greentown Houston has named its new cohort.

The Carbon to Value Initiative (C2V Initiative) — a collaboration between NYU Tandon School of Engineering's Urban Future Lab (UFL), Greentown Labs, and Fraunhofer USA — has named nine startup participants for the fourth year of its carbontech accelerator program.

"Once again, the C2V Initiative has been able to select some of the most promising carbontech startups through a very competitive process with a 7 percent acceptance rate," Frederic Clerc, director of the C2V Initiative and interim managing director of UFL, says in a news release. "The diversity of this cohort, in its technologies, products, geographies, and stages, makes it an amazing snapshot of the rapidly evolving carbontech innovation landscape."

The cohort was selected from over a hundred applications from nearly 30 countries. In the six-month program, the nine companies gain access to the C2V Initiative's Carbontech Leadership Council, an invitation-only group of corporate, nonprofit, and government leaders who provide commercialization opportunities and identify avenues for technology validation, testing, and demonstration.

The year four cohort, according to the release, includes:

  • Ardent, from New Castle, Delaware, is a process technology company that is developing membrane-based solutions for point-source carbon capture and other chemical separations.
  • CarbonBlue, from Haifa, Israel, develops a chemical process that mineralizes and extracts CO2 from water, which then reabsorbs more atmospheric CO2.
  • MacroCycle, from Somerville, Massachusetts, develops a chemical recycling process to turn polyethylene terephthalate (PET) and polyester-fiber waste into "virgin-grade" plastics.
  • Maple Materials, from Richmond, California, develops an electrolysis process to convert CO2 into graphite and oxygen.
  • Oxylus Energy, from New Haven, Connecticut, develops a direct electrochemical process to convert CO2 into fuels and chemical feedstocks, such as methanol.
  • Phlair, from Munich, Germany, develops a renewable-energy-powered Direct Air Capture (DAC) system using an electrochemical process for acid and base generation.
  • Secant Fuel, from Montreal, Quebec, Canada, develops a one-step electrocatalytic process that converts flue gas into syngas.
  • RenewCO2, from Somerset, New Jersey, is developing an electrochemical process to convert CO2 into fuels and chemicals, such as sustainable aviation fuel (SAF) or propylene glycol.
  • Seabound, from London, England, builds carbon-capture equipment for new and existing ships.

"The depth and breadth of carbontech innovations represented in this applicant pool speaks volumes to this growing and dynamic industry around the world," adds Kevin Dutt, Interim CEO of Greentown Labs. "We're eager to support these nine impressive companies as they progress through this program and look forward to seeing how they engage with the CLC now and into the future."

The C2V Initiative will host a public Year 4 kickoff event on Sept. 19 at Greentown Houston and via livestream.

In partnership with Venture Metals +, Baker Hughes has saved over 125 million pounds of scrap metals from more than 50 of the company's locations around the world. Photo via bakerhughes.com

Houston energy company diverts over 125M pounds of scrap metals from landfills

reduce, reuse, recycle

For three years, Baker Hughes has been working with a full-scale scrap processor partner to divert scrap metal waste from landfills as a part of the company's net-zero commitment by 2050.

In partnership with Venture Metals +, Baker Hughes has saved over 125 million pounds of scrap metals from more than 50 of the company's locations around the world.

Venture Metals + collects, recycles, and manages the full recycling process of scrap materials, providing recycling, reclamation, and investment recovery as a service to industrial, manufacturing, and service facilities.

“The relationship that has been formed between Baker Hughes and Venture Metals is the definition of a true partnership. Over the many years we have collaborated on significant projects and there has been a foundation of trust, transparency and investment on both sides,” Venture Metals’ Vice-Chairman of the Board Mark Chazanow says in a news release. “Together, we have been able to do our part to improve the environment by circular and sustainable recycling while also capturing substantial revenue gain. We look forward to growing the partnership and seeing a bright future ahead together.”

According to the release, Baker Hughes plans to grow the partnership to introduce similar programs at five key locations around the world. Venture Metals+ also set up Baker Hughes with customized containers to help separate titanium, stainless steel, Inconel, and other recyclable metals.

“Reducing our environmental footprint is a critical focus area for our sustainability strategy as we continue to reduce waste, minimize the resources we use and promote circularity,” Allyson Anderson Book, chief sustainability officer at Baker Hughes, adds. “Through partners like Venture Metals +, we are minimizing waste and reusing scrap materials as much as possible for more sustainable operations.”

The number one thing that consumers can remember when it comes to recycling is that thin, pliable plastic should be excluded from standard blue recycling bins. Photos by welcomia/Canva.

Yet another reason to loathe plastic bags

Guest column

As waste-to-energy gains a foothold in the energy transition, trash's more palatable cousin, recycling, sits just close enough for deeper inspection. Plastic, by and large, one of the most loved and loathed petroleum by-products, is often singled out as the most nefarious contributor to our declining climate.

With significant efforts underway to reduce the volume of single-use plastic while reusing or repurposing stronger plastics, let us turn attention to the third action in the timeless mantra–recycling.

Over the last few decades, we have embraced recycling globally, assured in our noble commitment to derive further utility out of items that no longer serve an immediate purpose from our unique perspective.

However, the act of recycling still closely resembles taking out the trash. We place items deemed worthy of secondary use into large, usually plastic, bins for carting far away from the rest of the things that still provide utility to our personal household or place of business.

For the most part, simply believing that there could or should be further utility of an item is criterion enough to warrant placement in the exalted blue bin. The small hit of dopamine elicited from the satisfaction that we are “doing our part” is just strong enough to reinforce the idea that we have also “done enough.”

But according to Vu Nguyen, director of corporate development and innovation, Waste Management, one of Houston’s leading trash, recycling, and environmental services companies, there remains one elusive challenge: the plastic bag.

The plastic bag proves problematic for a multitude of reasons, not least because of its role in ruining literally every.other.recyling.effort.ever. On the whole, we have been blissfully ignorant of the recycling process, and even more so of how much our good intentions to reuse and recycle are thwarting the same process for so many other reusable materials.

“The number one thing that consumers can remember when it comes to recycling is that thin, pliable plastic [like] bags and wrappers should be firmly excluded from standard blue recycling bins,” Nguyen shared at a Houston Tech Rodeo event earlier this spring.

After collection, simple but effective mechanisms sort items delivered to a recycling facility. Individuals pick through discarded materials placed on conveyor belts before the remaining items work their way through heavy magnets that extract useful metals while bursts of air pressure push lightweight items like paper away from heavier items like glass.

Plastic bags, including the lovely little blue ones so many of us like to purchase to fill our quaint non-standard recycling bins, tangle up in these conveyor belts, causing shutdowns to unravel them from materials otherwise well-suited for these sorting efforts. Downtime on the sorting line can get expensive, so much so that many recycling facilities often turn away entire trucks filled with potentially reusable items if even a single plastic bag is discovered inside.

Consider this the start of a public service announcement campaign to raise awareness of that simple fact.

Yasser Brenes, area president – south for Republic Services, echoes this sentiment as he shares a few tips and reminders with EnergyCapitalHTX.

  • Know What to Throw: Educate yourself on what can and cannot go inside your recycling bin. Focus on only recycling rigid plastic containers such as bottles, jugs and tubs, metal food and beverage containers, glass bottles and jars, paper and cardboard. Don’t be a wish-cycler, never throw items in your recycling bin if you are unsure if they can be recycled or not.
  • Empty, Clean, Dry: Recyclables should be rinsed free of residual food and liquid. If recyclables are not empty, clean and dry the residual food or liquid could contaminate other more fragile recyclables, like paper and cardboard, and require them to be thrown away.
  • Don’t Bag It: Recyclables should always be placed loose inside your recycling bin. Flexible plastics, such as grocery bags, wrap and tangle around the sorting equipment and should never be placed in your recycling bin.

That’s not to say that plastic bags and wrappers cannot be recycled at all; on the contrary, they absolutely can. The mechanisms for sorting them from other materials like paper, aluminum, glass, and heavy plastics just aren’t quite mature enough… yet.

------

Lindsey Ferrell is a contributing writer to EnergyCapitalHTX and founder of Guerrella & Co.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

ExxonMobil pauses plans for $7B hydrogen plant in Baytown

project on pause

As anticipated, Spring-based oil and gas giant ExxonMobil has paused plans to build a low-hydrogen plant in Baytown, Chairman and CEO Darren Woods told Reuters.

“The suspension of the project, which had already experienced delays, reflects a wider slowdown in efforts by traditional oil and gas firms to transition to cleaner energy sources as many of the initiatives struggle to turn a profit,” Reuters reported.

Woods signaled during ExxonMobil’s second-quarter earnings call that the company was weighing whether it would move forward with the proposed $7 billion plant.

The Biden-era Inflation Reduction Act established a 10-year incentive, the 45V tax credit, for production of clean hydrogen. But under President Trump’s One Big Beautiful Bill Act, the period for beginning construction of low-carbon hydrogen projects that qualify for the tax credit has been compressed. The Inflation Reduction Act called for construction to begin by 2033. The Big Beautiful Bill changed the construction start time to early 2028.

“While our project can meet this timeline, we’re concerned about the development of a broader market, which is critical to transition from government incentives,” Woods said during the earnings call.

Woods had said ExxonMobil was figuring out whether a combination of the 45Q tax credit for carbon capture projects and the revised 45V tax credit would enable a broader market for low-carbon hydrogen.

“If we can’t see an eventual path to a market-driven business, we won’t move forward with the [Baytown] project,” Woods told Wall Street analysts.

“We knew that helping to establish a brand-new product and a brand-new market initially driven by government policy would not be easy or advance in a straight line,” he added.

ExxonMobil announced in 2022 that it would build the low-carbon hydrogen plant at its refining and petrochemical complex in Baytown. The company had indicated the plant would start initial production in 2027.

ExxonMobil had said the Baytown plant would produce up to 1 billion cubic feet of hydrogen per day made from natural gas, and capture and store more than 98 percent of the associated carbon dioxide. The plant would have been capable of storing as much as 10 million metric tons of CO2 per year.

Greentown and partners name 10 startups to carbontech accelerator

new cohort

The Carbon to Value Initiative (C2V Initiative)—a collaboration between Greentown Labs, NYU Tandon School of Engineering's Urban Future Lab and Fraunhofer USA—has announced 10 startup participants to join the fifth cohort of its carbontech accelerator.

The six-month accelerator aims to help cleantech startups advance their commercialization efforts through access to the C2V Initiative’s Carbontech Leadership Council (CLC). The invitation-only council consists of corporate and nonprofit leaders from organizations like Shell, TotalEnergies, XPRIZE, L’Oréal and others who “foster commercialization opportunities and identify avenues for technology validation, testing, and demonstration,” according to a release from Greentown

“The No. 1 reason startups engage with Greentown is to find customers, grow their businesses, and accelerate impact—and the Carbon to Value Initiative delivers exactly that,” Georgina Campbell Flatter, CEO of Greentown, said in a news release. “It’s a powerful example of how meaningful engagement between entrepreneurs and industry turns innovation into commercial traction.”

The C2V Initiative received more than 100 applications from 33 countries, representing a variety of carbontech innovations. The 10 startups chosen for the 2025 fifth cohort include:

  • Cambridge, Massachusetts-based Sora Fuel, which integrates direct-air capture with direct conversion of the captured carbon into syngas for production of sustainable aviation fuel
  • Brooklyn-based Arbon, which develops a humidity-swing carbon-capture solution by capturing CO₂ from the air or point-source without heat or pressure
  • New York-based Cella Mineral Storage, which works to develop subsurface mineralization technology with integrated software, enabling new ways to sequester CO2 underground
  • Germany-based ICODOS, which helps transform emissions into value through a point-source carbon capture and methanol synthesis process in a single, modularized system
  • Vancouver-based Lite-1, which uses advanced biomanufacturing processes to produce circular colourants for use in textiles, cosmetics and food
  • London-based Mission Zero Technologies, which has developed and deployed an electrified, direct-air carbon capture solution that employs both liquid-adsorption and electrochemical technologies
  • Kenya-based Octavia Carbon, which develops a solid-adsorption-based, direct-air carbon capture solution that utilizes geothermal heat
  • California-based Rushnu, which combines point-source carbon capture with chemical production, turning salt and CO2 into chlorine-based chemicals and minerals
  • Brooklyn-based Turnover Labs, which develops modular electrolyzers that transform raw, industrial CO2 emissions into chemical building blocks, without capture or purification
  • Ontario-based Universal Matter, which develops a Flash Joule Heating process that converts carbon waste such as end-of-life plastics, tires or industrial waste into graphene

The C2V Initiative is based on Greentown Go, Greentown’s open-innovation program. The C2V Initiative has supported 35 startups that have raised over $600 million in follow-on funding.

Read about the 2024 cohort here.

CenterPoint gets go-ahead for $2.9B upgrade of Houston grid

grid resiliency

Texas utility regulators have given the green light for Houston-based CenterPoint Energy to spend $2.9 billion on strengthening its Houston-area electric grid to better withstand extreme weather.

The cost of the plan is nearly $3 billion below what CenterPoint initially proposed to the Public Utility Commission of Texas.

In early 2025, CenterPoint unveiled a $5.75 billion plan to upgrade its Houston-area power system from 2026 through 2028. But the price tag dropped to $2.9 billion as part of a legal settlement between CenterPoint and cities in the utility’s service area.

Sometime after the first quarter of next year, CenterPoint customers in the Houston area will pay an extra $1 a month for the next three years to cover costs of the resiliency plan. CenterPoint serves 2.9 million customers in a 12-county territory anchored by Houston.

CenterPoint says the plan is part of its “commitment to building the most resilient coastal grid in the country.”

A key to improving CenterPoint’s local grid will be stepping up management of high-risk vegetation (namely trees), which ranks as the leading cause of power outages in the Houston area. CenterPoint says it will “go above and beyond standard vegetation management by implementing an industry-leading three-year trim cycle,” clearing vegetation from thousands of miles of power lines.

The utility company says its plan aims to prevent Houston-area power outages in case of hurricanes, floods, extreme temperatures, tornadoes, wildfires, winter storms, and other extreme weather events.

CenterPoint says the plan will:

  • Improve systemwide resilience by 30 percent
  • Expand the grid’s power-generating capacity. The company expects power demand in the Houston area to grow 2 percent per year for the foreseeable future.
  • Save about $50 million per year on storm cleanup costs
  • Avoid outages for more than 500,000 customers in the event of a disaster like last year’s Hurricane Beryl
  • Provide 130,000 stronger, more storm-resilient utility poles
  • Put more than 50 percent of the power system underground
  • Rebuild or upgrade more than 2,200 transmission towers
  • Modernize 34,500 spans of underground cables

In the Energy Capital of the World, residents “expect and deserve an electric system that is safe, reliable, cost-effective, and resilient when they need it most. We’re determined to deliver just that,” Jason Wells, president and CEO of CenterPoint, said in January.