M&A Moves

Houston energy services company acquires carbon capture, storage biz

In M&A news, Buckeye Partners has acquired a carbon capture and storage company from Oklahoma. Photo via Getty Images

Another Houston energy company has announced an acquisition in the carbon capture space.

Buckeye Partners, a Houston-headquartered energy infrastructure and logistics provider, announced this week that it has acquired Oklahoma City-based Elysian Carbon Management from EnCap Flatrock Midstream. The terms of the deal were not disclosed.

Elysian, founded in 2018, secured an initial capital commitment of $350 million from EnCap Flatrock Midstream in 2021. The company's technology includes end-to-end carbon capture and storage solutions.

“This acquisition reflects Buckeye’s commitment to continue to provide essential infrastructure and logistics solutions to meet our customers’ evolving needs in the energy transition,” say Buckeye CEO Todd Russo in a news release. “Rapidly developing CCS-related technologies and solutions offer abundant synergies across Buckeye’s project development capabilities and existing pipeline network and are essential to enabling the energy transition’s success."

With the acquisition, Russo continues, the Elysian team will join the Buckeye platform to integrate the two companies' expertise. Per the release, Buckeye hopes to become a net-zero energy business by 2040, across scope 1 and 2 GHG emissions.

“Buckeye continues to demonstrate resiliency and emissions-reduction results across its increasingly diversified energy solutions portfolio,” says Elysian CEO Bret Logue in the release. “We’re fully aligned with their decarbonization mission and look forward to adding immediate value to Buckeye’s customer base and their momentum in the energy transition by integrating CCS technologies across the energy value chain.”

Less than a week before Buckey's M&A news, ExxonMobil announced its acquisition of a carbon capture company in a $4.9 billion deal.

Trending News

A View From HETI

Rice University scientists' “recharge-to-recycle” reactor has major implications for the electric vehicle sector. Photo courtesy Jorge Vidal/Rice University.

Engineers at Rice University have developed a cleaner, innovative process to turn end-of-life lithium-ion battery waste into new lithium feedstock.

The findings, recently published in the journal Joule, demonstrate how the team’s new “recharge-to-recycle” reactor recharges the battery’s waste cathode materials to coax out lithium ions into water. The team was then able to form high-purity lithium hydroxide, which was clean enough to feed directly back into battery manufacturing.

The study has major implications for the electric vehicle sector, which significantly contributes to the waste stream from end-of-life battery packs. Additionally, lithium tends to be expensive to mine and refine, and current recycling methods are energy- and chemical-intensive.

“Directly producing high-purity lithium hydroxide shortens the path back into new batteries,” Haotian Wang, associate professor of chemical and biomolecular engineering, co-corresponding author of the study and co-founder of Solidec, said in a news release. “That means fewer processing steps, lower waste and a more resilient supply chain.”

Sibani Lisa Biswal, chair of Rice’s Department of Chemical and Biomolecular Engineering and the William M. McCardell Professor in Chemical Engineering, also served as co-corresponding author on the study.

“We asked a basic question: If charging a battery pulls lithium out of a cathode, why not use that same reaction to recycle?” Biswal added in the release. “By pairing that chemistry with a compact electrochemical reactor, we can separate lithium cleanly and produce the exact salt manufacturers want.”

The new process also showed scalability, according to Rice. The engineers scaled the device to 20 square centimeters, then ran a 1,000-hour stability test and processed 57 grams of industrial black mass supplied by industry partner Houston-based TotalEnergies. The results produced lithium hydroxide that was more than 99 percent pure. It also maintained an average lithium recovery rate of nearly 90 percent over the 1,000-hour test, showing its durability. The process also worked across multiple battery chemistries, including lithium iron phosphate, lithium manganese oxide and nickel-manganese-cobalt variants.

Looking ahead, the team plans to scale the process and consider ways it can sustain high efficiency for greater lithium hydroxide concentrations.

“We’ve made lithium extraction cleaner and simpler,” Biswal added in the release. “Now we see the next bottleneck clearly. Tackle concentration, and you unlock even better sustainability.

Trending News