M&A Moves

Houston energy services company acquires carbon capture, storage biz

In M&A news, Buckeye Partners has acquired a carbon capture and storage company from Oklahoma. Photo via Getty Images

Another Houston energy company has announced an acquisition in the carbon capture space.

Buckeye Partners, a Houston-headquartered energy infrastructure and logistics provider, announced this week that it has acquired Oklahoma City-based Elysian Carbon Management from EnCap Flatrock Midstream. The terms of the deal were not disclosed.

Elysian, founded in 2018, secured an initial capital commitment of $350 million from EnCap Flatrock Midstream in 2021. The company's technology includes end-to-end carbon capture and storage solutions.

“This acquisition reflects Buckeye’s commitment to continue to provide essential infrastructure and logistics solutions to meet our customers’ evolving needs in the energy transition,” say Buckeye CEO Todd Russo in a news release. “Rapidly developing CCS-related technologies and solutions offer abundant synergies across Buckeye’s project development capabilities and existing pipeline network and are essential to enabling the energy transition’s success."

With the acquisition, Russo continues, the Elysian team will join the Buckeye platform to integrate the two companies' expertise. Per the release, Buckeye hopes to become a net-zero energy business by 2040, across scope 1 and 2 GHG emissions.

“Buckeye continues to demonstrate resiliency and emissions-reduction results across its increasingly diversified energy solutions portfolio,” says Elysian CEO Bret Logue in the release. “We’re fully aligned with their decarbonization mission and look forward to adding immediate value to Buckeye’s customer base and their momentum in the energy transition by integrating CCS technologies across the energy value chain.”

Less than a week before Buckey's M&A news, ExxonMobil announced its acquisition of a carbon capture company in a $4.9 billion deal.

Trending News

A View From HETI

Researchers from Rice University say their recent findings could revolutionize power grids, making energy transmission more efficient. Image via Getty Images.

A new study from researchers at Rice University, published in Nature Communications, could lead to future advances in superconductors with the potential to transform energy use.

The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials.

A team led by Rice’s Qimiao Si, the Harry C. and Olga K. Wiess Professor of Physics and Astronomy, used quantum Fisher information (QFI), a concept from quantum metrology, to measure how electron interactions evolve under extreme conditions. The research team also included Rice’s Yuan Fang, Yiming Wang, Mounica Mahankali and Lei Chen along with Haoyu Hu of the Donostia International Physics Center and Silke Paschen of the Vienna University of Technology. Their work showed that the quantum phenomenon of electron entanglement peaks at a quantum critical point, which is the transition between two states of matter.

“Our findings reveal that strange metals exhibit a unique entanglement pattern, which offers a new lens to understand their exotic behavior,” Si said in a news release. “By leveraging quantum information theory, we are uncovering deep quantum correlations that were previously inaccessible.”

The researchers examined a theoretical framework known as the Kondo lattice, which explains how magnetic moments interact with surrounding electrons. At a critical transition point, these interactions intensify to the extent that the quasiparticles—key to understanding electrical behavior—disappear. Using QFI, the team traced this loss of quasiparticles to the growing entanglement of electron spins, which peaks precisely at the quantum critical point.

In terms of future use, the materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

The team also found that quantum information tools can be applied to other “exotic materials” and quantum technologies.

“By integrating quantum information science with condensed matter physics, we are pivoting in a new direction in materials research,” Si said in the release.

Trending News