Despite its high energy production, Texas has had more outages than any other state over the past five years due to the increasing frequency and severity of extreme weather events and rapidly growing demand. Photo via Getty Images

Texas stands out among other states when it comes to energy production.

Even after mass rolling blackouts during Winter Storm Uri in 2021, the Lone Star State produced more electricity than any other state in 2022. However, it also exemplifies how challenging it can be to ensure grid reliability. The following summer, the state’s grid manager, the Electrical Reliability Council of Texas (ERCOT), experienced ten occasions of record-breaking demand.

Despite its high energy production, Texas has had more outages than any other state over the past five years due to the increasing frequency and severity of extreme weather events and rapidly growing demand, as the outages caused by Hurricane Beryl demonstrated.

A bigger storm is brewing

Electric demand is poised to increase exponentially over the next few years. Grid planners nationwide are doubling their five-year load forecast. Texas predicts it will need to provide nearly double the amount of power within six years. These projections anticipate increasing demand from buildings, transportation, manufacturing, data centers, AI and electrification, underscoring the daunting challenges utilities face in maintaining grid reliability and managing rising demand.

However, Texas can accelerate its journey to becoming a grid reliability success story by taking two impactful steps. First, it could do more to encourage the adoption of distributed energy resources (DERs) like residential solar and battery storage to better balance the prodigious amounts of remote grid-scale renewables that have been deployed over the past decade. More DERs mean more local energy resources that can support the grid, especially local distribution circuits that are prone to storm-related outages. Second, by combining DERs with modern demand-side management programs and technology, utilities can access and leverage these additional resources to help them manage peak demand in real time and avoid blackout scenarios.

Near-term strategies and long-term priorities

Increasing electrical capacity with utility-scale renewable energy and storage projects and making necessary electrical infrastructure updates are critical to meet projected demand. However, these projects are complex, resource-intensive and take years to complete. The need for robust demand-side management is more urgent than ever.

Texas needs rapidly deployable solutions now. That’s where demand-side management comes in. This strategy enables grid operators to keep the lights on by lowering peak demand rather than burning more fossil fuels to meet it or, worse, shutting everything off.

Demand response, a demand-side management program, is vital in balancing the grid by lowering electricity demand through load control devices to ensure grid stability. Programs typically involve residential energy consumers volunteering to let the grid operator reduce their energy consumption at a planned time or when the grid is under peak load, typically in exchange for a credit on their energy bill. ERCOT, for example, implements demand response and rate structure programs to reduce strain on the grid and plans to increase these strategies in the future, especially during the months when extreme weather events are more likely and demand is highest.

The primary solution for meeting peak demand and preventing blackouts is for the utility to turn on expensive, highly polluting, gas-powered “peaker” plants. Unfortunately, there’s a push to add more of these plants to the grid in anticipation of increasing demand. Instead of desperately burning fossil fuels, we should get more out of our existing infrastructure through demand-side management.

Optimizing existing infrastructure

The effectiveness of demand response programs depends in part on energy customers' participation. Despite the financial incentive, customers may be reluctant to participate because they don’t want to relinquish control over their AC. Grid operators also need timely energy usage data from responsive load control technology to plan and react to demand fluctuations. Traditional load control switches don’t provide these benefits.

However, intelligent residential load management technology like smart panels can modernize demand response programs and maximize their effectiveness with real-time data and unprecedented responsiveness. They can encourage customer participation with a less intrusive approach – unlocking the ability for the customer to choose from multiple appliances to enroll. They can also provide notifications for upcoming demand response events, allowing the customer to plan for the event or even opt-out by appliance. In addition to their demand response benefits, smart panels empower homeowners to optimize their home energy and unlock extended runtime for home batteries during a blackout.

Utilities and government should also encourage the adoption of distributed energy resources like rooftop solar and home batteries. These resources can be combined with residential load management technology to drastically increase the effectiveness of demand response programs, granting utilities more grid-stabilizing resources to prevent blackouts.

Solar and storage play a key role

During the ten demand records in the summer of 2023, batteries discharging in the evening helped avoid blackouts, while solar and wind generation covered more than a third of ERCOT's daytime load demand, preventing power price spikes.

Rooftop solar panels generate electricity that can be stored in battery backup systems, providing reliable energy during outages or peak demand. Smart panels extend the runtime of these batteries through automated energy optimization, ensuring critical loads are prioritized and managed efficiently.

Load management technology, like smart panels, enhances the effectiveness of DERs. In rolling blackouts, homeowners with battery storage can rely on smart panels to manage energy use, keeping essential appliances operational and extending stored energy usability. Smart panels allow utilities to effectively manage peak demand, enabling load flexibility and preventing grid overburdening. These technologies and an effective demand response strategy can help Texans optimize the existing energy capacity and infrastructure.

A more resilient energy future

Texas can turn its energy challenges into opportunities by embracing advanced energy management technologies and robust demand-side strategies. Smart panels and distributed energy resources like solar and battery storage offer a promising path to a resilient and efficient grid. As Texans navigate increasing electricity demands and extreme weather events, these innovations provide hope for a future where reliable energy is accessible to all, ensuring grid stability and enhancing the quality of life across the state.

———

Kelly Warner is the CEO of Lumin, a responsive energy management solutions company.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston startup launches groundbreaking mineral hydrogen pilot

pilot project

Houston climatech company Vema Hydrogen recently completed drilling its first two pilot wells in Quebec for its Engineered Mineral Hydrogen (EMH) pilot. The company says the project is the first EMH pilot of its kind.

Vema’s EMH technology produces low-cost, high-purity hydrogen from subsurface rock formations. It has the capacity to support e-fuel and clean mobility industries and the shipping and air transport markets. The pilot project is the first field deployment of the company’s technology.

“This pilot will provide the critical data needed to validate Engineered Mineral Hydrogen at commercial scale and demonstrate that Quebec can lead the world in this emerging clean energy category,” Pierre Levin, CEO of Vema Hydrogen, said in a news release.

Levin added that the sample collected thus far in the pilot is “exactly what we expected, and is very promising for hydrogen yields.”

Through the pilot, Vema will collect core samples and begin subsurface analysis to evaluate fluid movement and monitor hydrogen production from the wells. The data collected from the pilot will shape Vema's plans for commercialization and provide documentation for proof of concept in the field, according to the news release.

“Vema Hydrogen perfectly embodies the spirit of the grey to green movement: transforming mining liabilities into drivers of innovation and ecological transition,” Ludovic Beauregard, circular economy commissioner at the Thetford Region Economic Development Corporation, added in the release.

“This project demonstrates that it is possible to reconcile the revitalization of mining regions, clean energy and sustainable economic development for these areas.”

In addition to its pilot in Canada, Vema also recently signed a 10-year hydrogen purchase and sale agreement with San Francisco-based Verne Power to supply clean hydrogen for data centers across California. The company was selected as a Qualified Supplier by The First Public Hydrogen Authority, which will allow it to supply clean hydrogen at scale to California’s municipalities, transit agencies and businesses through the FPH2 network.

Vema aims to produce Engineered Mineral Hydrogen for less than $1 per kilogram. The company, founded in 2024, is working toward a gigawatt-scale hydrogen supply in North America.

Houston startup wins funding through new Bezos Earth Fund initiative

global winner

A Houston-based climatech startup is one of the first 16 companies in the world to receive funding through a new partnership between The Bezos Earth Fund and The Earthshot Prize.

Mati Carbon will receive $100,000 through the Bezos Earth Fund’s Acceleration Initiative. The initiative will provide $4.8 million over three years to support climate and nature solutions startups. It's backed by The Bezos Earth Fund, which was founded through a $10 billion gift from Amazon founder Jeff Bezos and aims to "transform the fight against climate change."

The Acceleration Initiative will choose 16 startups each year from The Earthshot Prize’s global pool of nominations that were not selected as finalists. The Earthshot Prize, founded by Prince William, awards £1 million to five energy startups each year over a decade.

"The Earthshot Prize selects 15 finalists each year, but our wider pool of nominations represents a global pipeline of innovators and investable solutions that benefit both people and planet. Collaborating with the Bezos Earth Fund to support additional high-potential solutions is at the heart of commitment to working with partners who share our vision," Jason Knauf, CEO of The Earthshot Prize, said in a news release. "By combining our strengths to support 48 carefully selected grantees from The Earthshot Prize’s pool of nominations, our partnership with the Bezos Earth Fund means we will continue to drive systemic change beyond our annual Prize cycle, delivering real-world impact at scale and speed.”

Mati Carbon was founded in 2022 by co-directors Shantanu Agarwal and Rwitwika Bhattacharya. It removes carbon through its Enhanced Rock Weathering (ERW) program and works with agricultural farms in Africa and India. Mati Carbon says the farmers it partners with are some of the most vulnerable to the impacts of climate change.

"As one of the first 16 organizations selected, this support enables us to expand our operations, move faster and think bigger about the impact we can create," the company shared in a LinkedIn post.

The other grantees from around the world include:

  • Air Protein Inc.
  • Climatenza Solar
  • Instituto Floresta Viva
  • Forum Konservasi Leuser
  • Fundación Rewilding Argentina
  • Hyperion Robotics
  • InPlanet
  • Lasso
  • Mandai Nature
  • MERMAID
  • Asociación Conservacionista Misión Tiburón
  • Simple Planet
  • Snowchange Cooperative
  • tHEMEat Company
  • UP Catalyst

Mati Carbon also won the $50 million grand prize in the XPRIZE Carbon Removal competition, backed by Elon Musk’s charitable organization, The Musk Foundation, last year.

Texas' oil and gas foundation could boost its geothermal future, UH says

future of geothermal

Equipped with the proper policies and investments, Texas could capitalize on its oil and gas infrastructure and expertise to lead the U.S. in development of advanced geothermal power, a new University of Houston white paper says.

Drilling, reservoir development and subsurface engineering are among the Texas oil and gas industry’s capabilities that could translate to geothermal energy, according to a news release. Furthermore, oil and gas skills, data, technology and supply chains could help make geothermal power more cost-effective.

Up to 80 percent of the investment required for a geothermal project involves capacity and skills that are common in the oil and gas industry, the white paper points out.

Building on its existing oil-and-gas foundation, Texas could help accelerate production of geothermal energy, lower geothermal energy costs and create more jobs in the energy workforce, according to the news release.

The paper also highlights geothermal progress made by Houston-based companies Fervo Energy, Quaise Energy and Sage Geosystems, as well as Canada-based Eavor Technologies Inc.

UH’s Division of Energy published the white paper, Advanced Geothermal: Opportunities and Challenges, in partnership with the C.T. Bauer College of Business’ Gutierrez Energy Management Institute.

“Energy demand, especially electricity demand, is continuing to grow, and we need to develop new low-carbon energy sources to meet those needs,” Greg Bean, executive director of the institute and author of the white paper, said of geothermal’s potential.