A new joint venture will work on four projects supplying 5 gigawatts of power from combined-cycle power plants for the ERCOT and PJM Interconnection grids. Photo via Getty Images.

Houston-based power provider NRG Energy Inc. has formed a joint venture with two other companies to meet escalating demand for electricity to fuel the rise of data centers and the evolution of generative AI.

NRG’s partners in the joint venture are GE Vernova, a provider of renewable energy equipment and services, and TIC – The Industrial Co., a subsidiary of construction and engineering company Kiewit.

“The growing demand for electricity in part due to GenAI and the buildup of data centers means we need to form new, innovative partnerships to quickly increase America’s dispatchable generation,” Robert Gaudette, head of NRG Business and Wholesale Operations, said in a news release. “Working together, these three industry leaders are committed to executing with speed and excellence to meet our customers’ generation needs.”

Initially, the joint venture will work on four projects supplying 5 gigawatts of power from combined-cycle power plants, which uses a combination of natural gas and steam turbines that produce additional electricity from natural gas waste. Electricity from these projects will be produced for power grids operated by the Electric Reliability Council of Texas (ERCOT) and PJM Interconnection. The projects are scheduled to come online from 2029 through 2032.

The joint venture says the model it’s developing for these four projects is “replicable and scalable,” with the potential for expansion across the U.S.

The company is also developing a new 721-megawatt natural gas combined-cycle unit at its Cedar Bayou plant in Baytown, Texas. Read more here.

Chevron, Engine No. 1 and GE Vernova will develop power plants that allow for the future integration of lower-carbon solutions to support AI-focused data centers. Photo via Getty Images

Chevron and partners to develop innovative power plants to support AI-focused data centers

power partners

Houston-based Chevron U.S.A. Inc., San Francisco investment firm Engine No. 1, and Boston electric service company GE Vernova have announced a partnership to create natural gas power plants in the United States. These plants support the increased demand for electricity at data centers, specifically those developing artificial intelligence solutions.

“The data centers needed to scale AI require massive amounts of 24/7 power. Meeting this demand is forecasted to require significant investment in power generation capacity, while managing carbon emissions and mitigating the risk of grid destabilization,” Chevron CEO Mike Wirth, shared in a LinkedIn post.

The companies say the plants, known as “power foundries,” are expected to deliver up to four gigawatts, equal to powering 3 million to 3.5 million U.S. homes, by the end of 2027, with possible project expansion. Their design will allow for the future integration of lower-carbon solutions, such as carbon capture and storage and renewable energy resources.

They are expected to leverage seven GE Vernova 7HA natural gas turbines, which will serve co-located data centers in the Southeast, Midwest and West. The exact locations have yet to be specified.

“Energy is the key to America’s AI dominance, “ Chris James, founder and chief investment officer of investment firm Engine No. 1, said in a news release. “By using abundant domestic natural gas to generate electricity directly connected to data centers, we can secure AI leadership, drive productivity gains across our economy and restore America’s standing as an industrial superpower. This partnership with Chevron and GE Vernova addresses the biggest energy challenge we face.”

According to the companies, the projects offer cost-effective and scalable solutions for growth in electrical demand while avoiding burdening the existing electrical grid. The companies plan to also use the foundries to sell surplus power to the U.S. power grid in the future.

The nonprofit climatetech incubator with locations in Houston and Somerville, Massachusetts, has a roster of over 80 corporates that provide funding, pilot opportunities, mentorship, and more. Photo via GreentownLabs.com

Greentown Labs names newest corporate partners

supporting startups

Greentown Labs has accumulated several new corporate partners in the past year.

The nonprofit climatetech incubator with locations in Houston and Somerville, Massachusetts, has a roster of over 80 corporates that provide funding, pilot opportunities, mentorship, and more.

In March, Ecopetrol joined Greentown as a Terawatt Partner, the highest level partner for the incubator. The company, which the Colombian government holds a majority ownership stake in, has integrated business across the hydrocarbon value chain, as well as low emission solutions and energy transmission. The company followed TotalEnergies, which joined at the Terawatt level, in January, and GE Vernova, a global energy company, which was announced as a partner in November.

Greentown's other new Terrawatt Partners include sustainable building solutions company Holcim and Boston Consulting Group, which helped the organization enhance its strategy for the future.

"As part of the partnership, BCG guided Greentown through a mission, vision, and strategy refresh aimed at maximizing the nonprofit incubator’s impact over the next several years," reads the Greentown Labs news release.

These are the other new additions to Greentown's corporate roster at the other levels:

  • Cell Signaling Technology (Gigawatt Partner), a life science company founded, owned, and led by active research scientists
  • SLB (Gigawatt Partner), a global technology company focused on innovating oil and gas, delivering digital at scale, decarbonizing industries, and developing and scaling new energy systems that accelerate the energy transition
  • Embraer-X (Megawatt Partner), the disruptive innovation company of Embraer, the world’s third-largest aircraft manufacturer
  • Koppers (Megawatt Partner), an integrated global provider of treated-wood products, wood-treatment chemicals, and carbon compounds
  • Re:Build Manufacturing (Megawatt Partner), a family of design, engineering, and manufacturing businesses across the United States whose combined experience creates an industrial powerhouse greater than the sum of its parts
GE Vernova and Pattern Energy, two energy transition companies with Houston ties, are teaming up for a historic wind project. Photo via ge.com

GE business to fill order for turbines to power Western Hemisphere's largest wind project

winds in the west

A business to be spun off by General Electric will build hundreds of turbines for what will be the largest wind project in the Western Hemisphere, part of a massive equipment order and long-term service agreement with the global renewable-energy giant Pattern Energy.

GE Vernova, which recently became a high-level partner of Boston and Houston-based Greentown Labs, announced the agreement Tuesday, saying it is the largest onshore wind turbine order received by the company, both in quantity and in the amount of electricity that the 674 turbines will eventually generate when the SunZia Wind Project comes online in 2026.

GE Vernova will tap its factory in Pensacola, Florida, for the large order, as well as tower manufacturing operations in New Mexico, Colorado, and Texas. Overall, 15 suppliers are on board for providing the necessary parts to make each turbine.

Construction already is underway on the SunZia wind farm and an associated multibillion-dollar transmission line that will funnel power to populated markets in the western United States. Pattern Energy, which has a Houston office, just weeks ago announced that it had closed on $11 billion in financing for the projects.

Backers see SunZia — described as an energy infrastructure undertaking larger than that of the Hoover Dam — as a pivotal project. The venture has attracted significant financial capital and stands to boost the percentage of the nation's electricity that comes from renewable sources amid escalating state and federal energy mandates.

Still, some Native American tribes and environmentalists worry about the location of a 50-mile (80-kilometer) segment of the transmission line where it will pass through Arizona's San Pedro Valley. The federal government already had approved the siting, but tribal leaders said there should have been more consultation.

In December, the U.S. Energy Department reported that the private sector over the past three years has announced investments of more than $180 billion in new or expanded clean energy manufacturing projects across the nation, including spending on development of larger, higher capacity wind turbines. GE has been among the companies to take advantage of tax credits included in the federal Inflation Reduction Act.

However, after years of record growth, the industry group American Clean Power expects less land-based wind to be added in the U.S. by year’s end — about enough to power 2.7 million to 3 million homes.

While companies are taking advantage of government incentives now, it can take years to bring projects online, the industry group said.

The SunZia Wind Project will span three counties in rural New Mexico. Crews already are constructing the concrete platforms that will support the turbines, and developers expect the first turbines to rise this autumn.

Pattern Energy CEO Hunter Armistead said the project will serve as a backbone for a cleaner, more reliable grid for customers across the western U.S. The company already has signed long-term power purchase agreements with Shell Energy North America and the University of California for a portion of the electricity that will be generated.

“Construction is in full swing on SunZia, using American-made turbine components and creating thousands of good-paying new jobs — a big win for the growing clean energy economy,” Armistead said in a statement.

Vic Abate, president and CEO of the company's wind business, called the venture historic.

“This project demonstrates GE Vernova’s ability to deliver on our workhorse strategy in onshore wind — producing fewer variants in large quantities at scale to drive quality and reliability across the fleet for our customers," he said in a statement.

In all, the company has more than 55,000 turbines installed worldwide.

The company has been working with Pattern Energy for the past 18 months on site layouts that are designed to maximize the performance of the turbines in central New Mexico and to ensure the supply chain can keep up with manufacturing demands.

GE Vernova consultants also have been working on interconnection with the transmission line, and the company's financial arm provided a tax equity loan commitment that helped to solidify financing for the project.

GE Verona joins Greentown Labs as a top-tier partner. Photo via gevernova.com

Greentown Labs names GE affiliate as latest top-level partner

new to the crew

Greentown Labs, dually located in Houston and Somerville, Massachusetts, has announced its latest Terawatt Partner, which is the climatetech incubator's highest-level partnership.

Greentown Labs announced this week thatGE Vernova, a global energy company that focusing on moving the energy transition through "continuing to electrify the world," has joined its top tier of partners. Greentown has over 20 of these Terawatt Partners, and GE Verona joins the ranks of Chevron, Amazon, Aramco, Microsoft, Shell, and more.

“GE Vernova embodies what we’re looking for in a partner: energy transition expertise with a deep commitment and passion for innovation, collaboration, and decarbonization,” Greentown Labs CEO and President Kevin Knobloch says in a statement. “Equally important, the team at GE Vernova has a real sense of urgency to accelerate global decarbonization and is eager to engage with our community of climatetech startups—I can’t wait to see all that we’ll accomplish together.”

GE Vernova specializes in power, wind, and electrification while keeping decarbonization at the forefront of its business. The company opened itsglobal headquarters in Cambridge, Massachusetts just down the street from where Greentown got its start in 2011 and only a few miles from the incubator today.

“I am thrilled to join as a new partner with Greentown Labs and look to support the climatetech ecosystem in many different ways,” GE Vernova CEO Scott Strazik says in the news release. “Whether it’s innovating new technologies, the industrialization of products, or leveraging our relationships globally, we are eager to collaborate with this unique and important group of entrepreneurs, innovators, and leaders.”

With the arrangement,Limor Spector, president of Ventures and Incubation at GE Vernova, will serve on the Industry Leadership Council.

Founded in 2022, GE Verona is expected to spin off from GE in the second quarter of next year.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Oxy opens energy-focused innovation center in Midtown Houston

moving in

Houston-based Occidental officially opened its new Oxy Innovation Center with a ribbon cutting at the Ion last month.

The opening reflects Oxy and the Ion's "shared commitment to advancing technology and accelerating a lower-carbon future," according to an announcement from the Ion.

Oxy, which was named a corporate partner of the Ion in 2023, now has nearly 6,500 square feet on the fourth floor of the Ion. Rice University and the Rice Real Estate Company announced the lease of the additional space last year, along with agreements with Fathom Fund and Activate.

At the time, the leases brought the Ion's occupancy up to 90 percent.

Additionally, New York-based Industrious plans to launch its coworking space at the Ion on May 8. The company was tapped as the new operator of the Ion’s 86,000-square-foot coworking space in Midtown in January.

Dallas-based Common Desk previously operated the space, which was expanded by 50 percent in 2023 to 86,000 square feet.

CBRE agreed to acquire Industrious in a deal valued at $400 million earlier this year. Industrious also operates another local coworking space is at 1301 McKinney St.

Industrious will host a launch party celebrating the new location Thursday, May 8. Find more information here.

Oxy Innovation Center. Photo via LinkedIn.


---

This story originally appeared on our sister site, InnovationMap.com.


Houston climatech company signs on to massive carbon capture project in Malaysia

big deal

Houston-based CO2 utilization company HYCO1 has signed a memorandum of understanding with Malaysia LNG Sdn. Bhd., a subsidiary of Petronas, for a carbon capture project in Malaysia, which includes potential utilization and conversion of 1 million tons of carbon dioxide per year.

The project will be located in Bintulu in Sarawak, Malaysia, where Malaysia LNG is based, according to a news release. Malaysia LNG will supply HYCO1 with an initial 1 million tons per year of raw CO2 for 20 years starting no later than 2030. The CCU plant is expected to be completed by 2029.

"This is very exciting for all stakeholders, including HYCO1, MLNG, and Petronas, and will benefit all Malaysians," HYCO1 CEO Gregory Carr said in the release. "We approached Petronas and MLNG in the hopes of helping them solve their decarbonization needs, and we feel honored to collaborate with MLNG to meet their Net Zero Carbon Emissions by 2050.”

The project will convert CO2 into industrial-grade syngas (a versatile mixture of carbon monoxide and hydrogen) using HYCO1’s proprietary CUBE Technology. According to the company, its CUBE technology converts nearly 100 percent of CO2 feed at commercial scale.

“Our revolutionary process and catalyst are game changers in decarbonization because not only do we prevent CO2 from being emitted into the atmosphere, but we transform it into highly valuable and usable downstream products,” Carr added in the release.

As part of the MoU, the companies will conduct a feasibility study evaluating design alternatives to produce low-carbon syngas.

The companies say the project is expected to “become one of the largest CO2 utilization projects in history.”

HYCO1 also recently announced that it is providing syngas technology to UBE Corp.'s new EV electrolyte plant in New Orleans. Read more here.

Tackling methane in the energy transition: Takeaways from Global Methane Hub and HETI

The view from heti

Leaders from across the energy value chain gathered in Houston for a roundtable hosted by the Global Methane Hub (GMH) and the Houston Energy Transition Initiative (HETI). The session underscored the continued progress to reduce methane emissions as the energy industry addresses the dual challenge of producing more energy that the world demands while simultaneously reducing emissions.

The Industry’s Shared Commitment and Challenge

There’s broad recognition across the industry that methane emissions must be tackled with urgency, especially as natural gas demand is projected to grow 3050% by 2050. This growth makes reducing methane leakage more than a sustainability issue—it’s also a matter of global market access and investor confidence.

Solving this issue, however, requires overcoming technical challenges that span infrastructure, data acquisition, measurement precision, and regulatory alignment.

Getting the Data Right: Top-Down vs. Bottom-Up

Accurate methane leak monitoring and quantification is the cornerstone of any effective mitigation strategy. A key point of discussion was the differentiation between top-down and bottom-up measurement approaches.

Top-down methods such as satellite and aerial monitoring offer broad-area coverage and can identify large emission plumes. Technologies such as satellite-based remote sensing (e.g., using high-resolution imagery) or airborne methane surveys (using aircraft equipped with tunable diode laser absorption spectroscopy) are commonly used for wide-area detection. While these methods are efficient for identifying large-scale emission hotspots, their accuracy is lower when it comes to quantifying emissions at the source, detecting smaller, diffuse leaks, and providing continuous monitoring.

In contrast, bottom-up methods focus on direct, on-site detection at the equipment level, providing more granular and precise measurements. Technologies used here include optical gas imaging (OGI) cameras, flame ionization detectors (FID), and infrared sensors, which can directly detect methane at the point of release. These methods are more accurate but can be resource and infrastructure intensive, requiring frequent manual inspections or continuous monitoring installations, which can be costly and technically challenging in certain environments.

The challenge lies in combining both methods: top-down for large-scale monitoring and bottom-up for detailed, accurate measurements. No single technology is perfect or all-inclusive. An integrated approach that uses both datasets will help to create a more comprehensive picture of emissions and improve mitigation efforts.

From Detection to Action: Bridging the Gap

Data collection is just the first step—effective action follows. Operators are increasingly focused on real-time detection and mitigation. However, operational realities present obstacles. For example, real-time leak detection and repair (LDAR) systems—particularly for continuous monitoring—face challenges due to infrastructure limitations. Remote locations like the Permian Basin may lack the stable power sources needed to run continuous monitoring equipment to individual assets.

Policy, Incentives, and Regulatory Alignment

Another critical aspect of the conversation was the need for policy incentives that both promote best practices and accommodate operational constraints. Methane fees, introduced to penalize emissions, have faced widespread resistance due to their design flaws that in many cases actually disincentivize methane emissions reductions. Industry stakeholders are advocating for better alignment between policy frameworks and operational capabilities.

In the United States, the Subpart W rule, for example, mandates methane reporting for certain facilities, but its implementation has raised concerns about the accuracy of some of the new reporting requirements. Many in the industry continue to work with the EPA to update these regulations to ensure implementation meets desired legislative expectations.

The EU’s demand for quantified methane emissions for imported natural gas is another driving force, prompting a shift toward more detailed emissions accounting and better data transparency. Technologies that provide continuous, real-time monitoring and automated reporting will be crucial in meeting these international standards.

Looking Ahead: Innovation and Collaboration

The roundtable highlighted the critical importance of advancing methane detection and mitigation technologies and integrating them into broader emissions reduction strategies. The United States’ 45V tax policy—focused on incentivizing production of low-carbon intensity hydrogen often via reforming of natural gas—illustrates the growing momentum towards science-based accounting and transparent data management. To qualify for 45V incentives, operators can differentiate their lower emissions intensity natural gas by providing foreground data to the EPA that is precise and auditable, essential for the industry to meet both environmental and regulatory expectations. Ultimately, the success of methane reduction strategies depends on collaboration between the energy industry, technology providers, and regulators.

The roundtable underscored that while significant progress has been made in addressing methane emissions, technical, regulatory, and operational challenges remain. Collaboration across industry, government, and technology providers is essential to overcoming these barriers. With better data, regulatory alignment, and investments in new technologies, the energy sector can continue to reduce methane emissions while supporting global energy demands.

———

HETI thanks Chris Duffy, Baytown Blue Hydrogen Venture Executive, ExxonMobil; Cody Johnson, CEO, SCS Technologies; and Nishadi Davis, Head of Carbon Advisory Americas, wood plc, for their participation in this event.

This article originally appeared on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.