Branch Energy aims to provide customers with clean energy at a lower cost than competitors. Photo via Getty Images

A tech-driven retail energy provider based in Houston has secured an oversubscribed series A round of funding.

Branch Energy raised a $10.8 million round led by climate-focused venture capital firm Prelude Ventures with co-investor Zero Infinity Partners, an infrastructure tech-focused firm. The fresh funding will go toward accelerating the company's battery management tech and build out the infrastructure of its field services.

A vertically integrated power provider, Branch Energy aims to provide customers with demand management software and battery storage systems to ensure long-term, stable, and clean energy at a lower cost than competitors.

“Our century-old grid design is not equipped for the complexity of today’s energy needs," Alex Ince-Cushman, Branch Energy co-founder and CEO, says in a news release. “Optimizing distributed energy assets in real-time will play an increasingly important role in managing the grid. We built Branch from the ground up as a technology company, allowing us to deliver value to customers in this new era of distributed energy by reducing costs while improving reliability."

The company chose Texas as its inaugural market based on the stress of the grid in the state, the company says in the release. Since 2021 when Branch Energy launched, it has signed up thousands of customers for its 100 percent clean energy service. The business proposition includes lowering customer's energy bills by 5 to 10 percent.

“The power grid, especially in Texas, requires distributed generation and flexible loads as basic economics drives deployment of more renewable resources,” Tim Woodward, managing partner at Prelude Ventures, adds. “Across the country, we are experiencing a major shift toward a decentralized and decarbonized grid. Branch Energy is bringing value to its customers through deployment of intelligent storage that lowers costs and improves reliability.”

Branch Energy, which is available now in some Texas regions, had previously raised $5.5 million in seed and pre-seed funding, per Crunchbase.

According to a new report, Houston is one of the top cities for funding for sustainability companies. Photo via Getty Images

Houston ranked a top market for attracting funding for sustainability-focused startups

by the numbers

From a financial standpoint, Houston appears to be a sustainable environment for sustainability-focused startups.

An analysis by PromoLeaf, a retailer of sustainable promotional products, that came out at the end of last year ranks Houston fourth among U.S. cities for the average funding raised by locally based startups in the sustainability sector, according to Crunchbase data.

Per the report, the Bayou City attracts $150.7 million in sustainability funding for startups. Ahead of Houston are Salt Lake City with $204.5 million; Santa Monica, California, with $154.3 million; and Fremont, California, with $153.4 million.

PromoLeaf’s analysis features cities where at least 20 companies are focused on sustainability.

The analysis indicates Houston has 20.6 sustainability startups per 100,000 residents. Ranking first in that regard is Boulder, Colorado (115 per 100,000 residents).

While Houston trails Boulder by a long distance, it fares well among the Texas cities in the analysis:

  1. Austin, 26.2 sustainability startups per 100,000 residents
  2. Houston, 20.6 sustainability startups per 100,000 residents
  3. Midland, 18.8 sustainability startups per 100,000 residents
  4. Plano, 11.9 sustainability startups per 100,000 residents
  5. Dallas, 11 sustainability startups per 100,000 residents
  6. Fort Worth, 5.3 sustainability startups per 100,000 residents
  7. San Antonio, 5.2 sustainability startups per 100,000 residents

PromoLeaf says more than 21,600 sustainability startups operate in the U.S. They’re in the renewable energy, recycling and pollution control, environmental engineering, green consumer goods, and environmental consulting industries.

The analysis shows Houston has:

  • 13.7 renewable energy startups per 100,000 residents
  • 5.8 recycling and pollution control startups per 100,000 residents
  • 3.5 environmental engineering startups per 100,000 residents
  • 2.9 environmental consulting startups per 100,000 residents
  • 0.70 green consumer goods startups per 100,000 residents

According to the Greater Houston Partnership, renewable energy startups leading Houston’s energy transformation include Energy Transition Ventures, Fysikes Biosolutions, Ionada, Katz Water Technologies, Pressure Corp., and Renewell Energy.

“A dynamic business climate combined with growth in venture capital funding in Houston has created fertile ground for companies of all stages aiming to power our world through the global energy transition,” the partnership says. “As the Energy Capital of the World, Houston has become a hub for startups and venture capital firms investing in the region’s energy future.”

Outside the energy sector, Houston startups like Trendy Seconds also are making their mark in sustainability. The company runs an online marketplace where women can find preowned clothing or shop for new clothing from sustainable brands.

“Our ultimate goal is to make responsible consumption super easy,” Maria Burgos, founder of Trendy Seconds, told InnovationMap last year.

------

This article originally ran on InnovationMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Why 2026 must be the year Texas makes transmission as its top energy priority

guest column

Texas takes pride in running one of the most dynamic and deregulated energy markets in the world, but conversations about electricity rarely focus on what keeps it moving: transmission infrastructure.

As ERCOT projects unprecedented electricity demand growth and grid operators update their forecasts for 2026, it’s becoming increasingly clear that generation, whether renewable or fossil, is only part of the solution. Transmission buildout and sound governing policy now stand as the linchpin for reliability, cost containment, and long-term resilience in a grid under unprecedented stress.

At the heart of this urgency is one simple thing: demand. Over 2024 and 2025, ERCOT has been breaking records at a pace we haven’t seen before. From January through September of 2025 alone, electricity use jumped more than 5% over the year before, the fastest growth of any major U.S. grid. And it’s not slowing down.

The Energy Information Administration expects demand to climb another 14% in 2026, pushing total consumption to roughly 425 terawatt-hours in just the first nine months. That surge isn’t just about more people moving to Texas or running their homes differently; it’s being driven by massive industrial and technology loads that simply weren’t part of the equation ten years ago.

The most dramatic contributor to that rising demand is large-scale infrastructure such as data centers, cloud computing campuses, crypto mining facilities, and electrified industrial sectors. In the latest ERCOT planning update, more than 233 gigawatts of total “large load” interconnection requests were being tracked, an almost 300% jump over just a year earlier, with more than 70% of those requests tied to data centers.

Imagine hundreds of new power plants requesting to connect to the grid, all demanding uninterrupted power 24/7. That’s the scale of the transition Texas is facing, and it’s one of the major reasons transmission planning is no longer back-of-house policy talk but a central grid imperative.

Yet transmission is complicated, costly, and inherently long-lead. It takes three to six years to build new transmission infrastructure, compared with six to twelve months to add a new load or generation project.

This is where Texas will feel the most tension. Current infrastructure can add customers and power plants quickly, but the lines to connect them reliably take time, money, permitting, and political will.

To address these impending needs, ERCOT wrapped up its 2024 Regional Transmission Plan (RTP) at the end of last year, and the message was pretty clear: we’ve got work to do. The plan calls for 274 transmission projects and about 6,000 miles of new, rebuilt, or upgraded lines just to handle the growth coming our way and keep the lights on.

The plan also suggests upgrading to 765-kilovolt transmission lines, a big step beyond the standard 345-kV system. When you start talking about 765-kilovolt transmission lines, that’s a big leap from what Texas normally uses. Those lines are built to move a massive amount of power over long distances, but they’re expensive and complicated, so they’re only considered when planners expect demand to grow far beyond normal levels. Recommending them is a clear signal that incremental upgrades won’t be enough to keep up with where electricity demand is headed.

There’s a reason transmission is suddenly getting so much attention. ERCOT and just about every industry analyst watching Texas are projecting that electricity demand could climb as high as 218 gigawatts by 2031 if even a portion of the massive queue of large-load projects actually comes online. When you focus only on what’s likely to get built, the takeaway is the same: demand is going to stay well above anything we’ve seen before, driven largely by the steady expansion of data centers, cloud computing, and digital infrastructure across the state.

Ultimately, the decisions Texas makes on transmission investment and the policies that determine how those costs are allocated will shape whether 2026 and the years ahead bring greater stability or continued volatility to the grid. Thoughtful planning can support growth while protecting reliability and affordability, but falling short risks making volatility a lasting feature of Texas’s energy landscape.

Transmission Policy: The Other Half of the Equation

Infrastructure investment delivers results only when paired with policies that allow it to operate efficiently and at scale. Recognizing that markets alone won’t solve these challenges, Texas lawmakers and regulators have started creating guardrails.

For example, Senate Bill 6, now part of state law, aims to improve how large energy consumers are managed on the grid, including new rules for data center operations during emergencies and requirements around interconnection. Data centers may even be required to disconnect under extreme conditions to protect overall system reliability, a novel and necessary rule given their scale.

Similarly, House Bill 5066 changed how load forecasting occurs by requiring ERCOT to include utility-reported projections in its planning processes, ensuring transmission planning incorporates real-world expectations. These policy updates matter because grid planning isn’t just a technical checklist. It’s about making sure investment incentives, permitting decisions, and cost-sharing rules are aligned so Texas can grow its economy without putting unnecessary pressure on consumers.

Without thoughtful policy, we risk repeating past grid management mistakes. For example, if transmission projects are delayed or underfunded while new high-demand loads come online, we could see congestion worsen. If that happens, affordable electricity would be located farther from where it’s needed, limiting access to low-cost power for consumers and slowing overall economic growth. That’s especially critical in regions like Houston, where energy costs are already a hot topic for households and businesses alike.

A 2026 View: Strategy Over Shortage

As we look toward 2026, here are the transmission and policy trends that matter most:

  • Pipeline of Projects Must Stay on Track: ERCOT’s RTP is ambitious, and keeping those 274 projects, thousands of circuit miles, and next-generation 765-kV lines moving is crucial for reliability and cost containment.
  • Large Load Forecasting Must Be Nuanced: The explosion in large-load interconnection requests, whether or not every project materializes, signals demand pressure that transmission planners cannot ignore. Building lines ahead of realized demand is not wasteful planning; it’s insurance against cost and reliability breakdowns.
  • Policy Frameworks Must Evolve: Laws like SB 6 and HB 5066 are just the beginning. Texas needs transparent rules for cost allocation, interconnection standards, and emergency protocols that keep consumers protected while supporting innovation and economic growth.
  • Coordination Among Stakeholders Is Critical: Transmission doesn’t stop at one utility’s borders. Regional cooperation among utilities, ERCOT, and local stakeholders is essential to manage congestion and develop systemwide reliability solutions.

Here’s the bottom line: Generation gets the headlines, but transmission makes the grid work. Without a robust transmission buildout and thoughtful governance, even the most advanced generation mix that includes wind, solar, gas, and storage will struggle to deliver the reliability Texans expect at a price they can afford.

In 2026, Texas is not merely testing its grid’s capacity to produce power; it’s testing its ability to move that power where it’s needed most. How we rise to meet that challenge will define the next decade of energy in the Lone Star State.

———

Sam Luna is director at BKV Energy, where he oversees brand and go-to-market strategy, customer experience, marketing execution, and more.

New Gulf Coast recycling plant partners with first-of-kind circularity hub

now open

TALKE USA Inc., the Houston-area arm of German logistics company TALKE, officially opened its Recycling Support Center earlier this month.

Located next to the company's Houston-area headquarters, the plant will process post-consumer plastic materials, which will eventually be converted into recycling feedstock. Chambers County partially funded the plant.

“Our new recycling support center expands our overall commitment to sustainable growth, and now, the community’s plastics will be received here before they head out for recycling. This is a win for the residents of Chambers County," Richard Heath, CEO and president of TALKE USA, said in a news release.

“The opening of our recycling support facility offers a real alternative to past obstacles regarding the large amount of plastic products our local community disposes of. For our entire team, our customers, and the Mont Belvieu community, today marks a new beginning for effective, safe, and sustainable plastics recycling.”

The new plant will receive the post-consumer plastic and form it into bales. The materials will then be processed at Cyclyx's new Houston Circularity Center, a first-of-its-kind plastic waste sorting and processing facility being developed through a joint venture between Cyclix, ExxonMobil and LyondellBasell.

“Materials collected at this facility aren’t just easy-to-recycle items like water bottles and milk jugs. All plastics are accepted, including multi-layered films—like chip bags and juice pouches. This means more of the everyday plastics used in the Chambers County community can be captured and kept out of landfills,” Leslie Hushka, chief impact officer at Cyclyx, added in a LinkedIn post.

Cyclyx's circularity center is currently under construction and is expected to produce 300 million pounds of custom-formulated feedstock annually.

Houston quantum simulator research reveals clues for solar energy conversion

energy flow

Rice University scientists have used a programmable quantum simulator to mimic how energy moves through a vibrating molecule.

The research, which was published in Nature Communications last month, lets the researchers watch and control the flow of energy in real time and sheds light on processes like photosynthesis and solar energy conversion, according to a news release from the university.

The team, led by Rice assistant professor of physics and astronomy Guido Pagano, modeled a two-site molecule with one part supplying energy (the donor) and the other receiving it (the acceptor).

Unlike in previous experiments, the Rice researchers were able to smoothly tune the system to model multiple types of vibrations and manipulate the energy states in a controlled setting. This allowed the team to explore different types of energy transfer within the same platform.

“By adjusting the interactions between the donor and acceptor, coupling to two types of vibrations and the character of those vibrations, we could see how each factor influenced the flow of energy,” Pagano said in the release.

The research showed that more vibrations sped up energy transfer and opened new paths for energy to move, sometimes making transfer more efficient even with energy loss. Additionally, when vibrations differed, efficient transfer happened over a wider range of donor–acceptor energy differences.

“The results show that vibrations and their environment are not simply background noise but can actively steer energy flow in unexpected ways,” Pagano added.

The team believes the findings could help with the design of organic solar cells, molecular wires and other devices that depend on efficient energy or charge transfer. They could also have an environmental impact by improving energy harvesting to reduce energy losses in electronics.

“These are the kinds of phenomena that physical chemists have theorized exist but could not easily isolate experimentally, especially in a programmable manner, until now,” Visal So, a Rice doctoral student and first author of the study, added in the release.

The study was supported by The Welch Foundation,the Office of Naval Research, the National Science Foundation CAREER Award, the Army Research Office and the Department of Energy.