full steam ahead

Houston-based energy transition company to build innovative power, steam facility in Illinois

A Houston-based energy transition project developer announced its $1 billion project to provide cleaner energy to an Illinois-based agribusiness company. Photo via warwickcs.com

Broadwing Energy, a subsidiary of Houston-based energy transition company Warwick Carbon Solutions, is building a more than $1 billion natural gas facility in Illinois that’ll supply power for agribusiness giant Archer Daniels Midland and simultaneously reduce carbon emissions.

Construction is expected to start in 2025 and wrap up in 2028.

The natural gas plant will provide both electricity and steam for ADM’s processing operations in Decatur, Illinois, which consist of three facilities across more than 1,100 acres. CO2 “scrubbing” technology installed at the power plant will capture carbon emissions, which will then be kept in ADM carbon storage wells.

ADM’s products include citric acid, lactic acid, xanthan gum, dextrose, sorbitol, corn syrup, and ethanol.

Warwick says the power plant holds the potential to permanently remove more than two million tons of CO2 emissions per year. In addition, it will create about 1,000 construction jobs and two dozen permanent jobs.

Broadwing says the plant will net roughly 350 megawatts of lower-emission power to help decarbonize the industrial, transportation, and electricity sectors. ADM will buy about 95 megawatts of that power for its Decatur operations.

“This project will serve as a model for others to follow as we work toward decarbonizing our economy and the world,” says Jonathan Wiens, CEO of Warwick.

The Decatur project was announced in 2021.

Warwick Carbon Solutions’ equity backer is London-based investment firm Warwick Capital Partners, which opened a Houston office last year. Founded in 2010, Warwick Capital has about $2.5 billion in assets under management.

Trending News

A View From HETI

A team at the University of Houston is changing the game for sodium-ion batteries. Photo via Getty Images

A research lab at the University of Houston has developed a new type of material for sodium-ion batteries that could make them more efficient and boost their energy performance.

Led by Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, the Canepa Research Laboratory is working on a new material called sodium vanadium phosphate, which improves sodium-ion battery performance by increasing the energy density. Energy density is the amount of energy stored per kilogram, and the new material can do so by more than 15 percent. With a higher energy density of 458 watt-hours per kilogram — compared to the 396 watt-hours per kilogram in older sodium-ion batteries — this material brings sodium technology closer to competing with lithium-ion batteries, according to the researchers.

The Canepa Lab used theoretical expertise and computational methods to discover new materials and molecules to help advance clean energy technologies. The team at UH worked with the research groups headed by French researchers Christian Masquelier and Laurence Croguennec from the Laboratoire de Reáctivité et de Chimie des Solides, which is a CNRS laboratory part of the Université de Picardie Jules Verne, in Amiens France, and the Institut de Chimie de la Matière Condensée de Bordeaux, Université de Bordeaux, Bordeaux, France for the experimental work on the project.

The researchers then created a battery prototype using the new materia sodium vanadium phosphate, which demonstrated energy storage improvements. The material is part of a group called “Na superionic conductors” or NaSICONs, which is made to let sodium ions move in and out of the battery during charging and discharging.

“The continuous voltage change is a key feature,” Canepa says in a news release. “It means the battery can perform more efficiently without compromising the electrode stability. That’s a game-changer for sodium-ion technology.”

The synthesis method used to create sodium vanadium phosphate may be applied to other materials with similar chemistries, which could create new opportunities for advanced energy storage. A paper of this work was published in the journal Nature Materials.

"Our goal is to find clean, sustainable solutions for energy storage," Canepa adds. "This material shows that sodium-ion batteries can meet the high-energy demands of modern technology while being cost-effective and environmentally friendly."

Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, is leading a research project that can change the effectiveness of sodium-ion batteries. Photo courtesy of UH

Trending News