The Carbon to Value Initiative kicks off this week at Greentown Houston. Photo via GreentownLabs.com

A carbon innovation initiative in collaboration with Greentown Houston has named its new cohort.

The Carbon to Value Initiative (C2V Initiative) — a collaboration between NYU Tandon School of Engineering's Urban Future Lab (UFL), Greentown Labs, and Fraunhofer USA — has named nine startup participants for the fourth year of its carbontech accelerator program.

"Once again, the C2V Initiative has been able to select some of the most promising carbontech startups through a very competitive process with a 7 percent acceptance rate," Frederic Clerc, director of the C2V Initiative and interim managing director of UFL, says in a news release. "The diversity of this cohort, in its technologies, products, geographies, and stages, makes it an amazing snapshot of the rapidly evolving carbontech innovation landscape."

The cohort was selected from over a hundred applications from nearly 30 countries. In the six-month program, the nine companies gain access to the C2V Initiative's Carbontech Leadership Council, an invitation-only group of corporate, nonprofit, and government leaders who provide commercialization opportunities and identify avenues for technology validation, testing, and demonstration.

The year four cohort, according to the release, includes:

  • Ardent, from New Castle, Delaware, is a process technology company that is developing membrane-based solutions for point-source carbon capture and other chemical separations.
  • CarbonBlue, from Haifa, Israel, develops a chemical process that mineralizes and extracts CO2 from water, which then reabsorbs more atmospheric CO2.
  • MacroCycle, from Somerville, Massachusetts, develops a chemical recycling process to turn polyethylene terephthalate (PET) and polyester-fiber waste into "virgin-grade" plastics.
  • Maple Materials, from Richmond, California,develops an electrolysis process to convert CO2 into graphite and oxygen.
  • Oxylus Energy, from New Haven, Connecticut, develops a direct electrochemical process to convert CO2 into fuels and chemical feedstocks, such as methanol.
  • Phlair, from Munich, Germany, develops a renewable-energy-powered Direct Air Capture (DAC) system using an electrochemical process for acid and base generation.
  • Secant Fuel, from Montreal, Quebec, Canada, develops a one-step electrocatalytic process that converts flue gas into syngas.
  • RenewCO2, from Somerset, New Jersey, is developing an electrochemical process to convert CO2 into fuels and chemicals, such as sustainable aviation fuel (SAF) or propylene glycol.
  • Seabound, from London, England, builds carbon-capture equipment for new and existing ships.

"The depth and breadth of carbontech innovations represented in this applicant pool speaks volumes to this growing and dynamic industry around the world," adds Kevin Dutt, Interim CEO of Greentown Labs. "We're eager to support these nine impressive companies as they progress through this program and look forward to seeing how they engage with the CLC now and into the future."

The C2V Initiative will host a public Year 4 kickoff event on Sept. 19 at Greentown Houston and via livestream.

Texas has some room to improve when it comes to EV states, one report found — and more things to know this week. Photo via Getty Images

Texas loses speed among top EV states, apps open for Greentown program, and more things to know this week

take note

Editor's note: Dive headfirst into the new week with three quick things to catch up on in Houston's energy transition: applications for a Greentown Labs program has opened, Texas falls flat on a ranking of best EV states, and more.

Texas puts it in park near the bottom of list of best states for EV drivers

You’d think that producing tens of thousands of Teslas might help drive up Texas’ standing among the best states for owning an electric vehicle. To the contrary, Texas ranks among the worst states to be an EV owner.

A new list from EV Charger Reviews puts Texas in the No. 2 position among the worst states for owning an EV. Washington leads the pack of the worst EV states. Topping the list of the best states for EV owners is Maine, followed by Colorado and Vermont. Read more about the methodology.

Big deal: GridBeyond's $55M series C 

GridBeyond,which has its U.S. headquarters in Houston, raised its series C to support its growth in the the United States.

The round closed at €52 million, or around $55 million. Founded in 2010, GridBeyond's AI platform allows businesses to unlock the full potential of energy assets and prioritize sustainability, resilience, and affordability of energy.

"This funding, together with the support of our new partners, will enable us to expand our product offering and strengthen our leadership position in this space," Michael Phelan, co-founder and CEO of GridBeyond, says in a news release. “The newly completed financing round sets GridBeyond on the path to increase the reach of our intelligent energy platform and deliver world leading AI and powerful automation capabilities to smart grid and energy markets across the world." Read more details about the round.

Greentown Labs opens C2V Initiative apps

For the fourth year, the Carbon to Value Initiative, a multi-year collaboration from the Urban Future Lab at NYU Tandon School of Engineering, Greentown Labs, and Fraunhofer USA — has opened applications. The program is looking for "startups at Technology Readiness Level 4-7 that are developing carbontech innovations related to carbon conversion to added-value products; carbon capture; and carbon sequestration and removal," according to Greentown.

The selected cohort will have access to the C2V Initiative’s CLC, an invitation-only group of corporate, nonprofit, and government thought leaders across the energy industry. Startups will also each receive a $10,000 stipend to support their participation in the accelerator. Applications are open through June 21, 2024. To learn more about the program or to apply, click here.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

25 years of innovation: Repsol exec on Houston's role in the energy transition

the view from heti

Houston hosted the inaugural Energy + Climate Startup Week in September, which brought together leading energy and climate venture capital investors, industry leaders and startups from around the world to showcase the most innovative companies and technologies that are transforming the energy industry while driving a sustainable, low-carbon energy future.

Repsol was one of the inaugural sponsors for the weeks kick off event that hosted several leading startups. This year marked 25 years of energy innovation for Repsol in the United States. As the energy landscape evolves, Repsol has committed to significant growth in renewable capacity, with an impressive 720 MW of solar and storage capacity already operational and 1.5 GW under construction.

Caton Fenz, CEO for Repsol’s Renewables North America shares more about Repsol’s approach to expanding its renewable footprint, integrating green energy into its core business and leveraging Houston’s unique role as a leader in the energy transition. Here’s an inside look at Repsol’s milestones and future goals in the journey toward decarbonization and a sustainable energy future.

Can you tell us more about Repsol’s strategy for expanding its renewables business?

This year Repsol is celebrating 25 years of energy development in the United States. Across the US, we have a team of more than 800 employees, with more than 130 employees working in the renewables business specifically.

Repsol’s growth ambition in the US renewable energy market is significant. Since launching our renewables activity in the US three years ago, we have installed more than 720 MW of solar generation and energy storage capacity. Today we have more than 1.5 GW of additional solar and energy storage capacity under construction, and more than 20 GW of solar, wind and energy storage in development across 13 states.

How does Repsol plan to integrate renewable energy sources into its broader business model?

Repsol Renewables operates in accordance with Repsol’s values and strategies. Renewable energy generation is one of the pillars of Repsol’s decarbonization strategy. Repsol will invest between €3 and 4 billion to organically develop its global project portfolio and aims to reach between 9,000 MW and 10,000 MW of installed capacity by 2027. Of this, 30% will be in the United States.

With these objectives in mind, we have been able to accelerate the development of wind, solar, and energy storage across the US market and the globe. By expanding our renewable energy business, we can further meet record demand growth for renewable energy.

What are the key projects or milestones that have been achieved within Repsol’s renewables portfolio so far?

Earlier this year, we announced the commercial operation of Frye Solar, our largest solar project worldwide. This project, located in Swisher County, Texas, has a total capacity of 637 MW. And as noted above, we have an additional 1.4 GW of projects under construction currently. These major energy infrastructure projects are indicative of the scale of our operations in the US.

Why does Repsol believe being located in Houston is critical for its business, particularly in the energy transition?

Repsol is proudly committed to Houston’s role in developing and delivering energy and value for the world. Houston is known as the Energy Capital of the World and over the next 10 years, we’ll see it be known as the Energy Transition Capital of the World. With Repsol’s Renewables North America business located in downtown Houston, we have access to talent and partnerships in a booming city filled with energy experts.

Why does Repsol see value in participating in Houston Energy + Climate Startup Week?

At Houston Energy + Climate Startup Week, Repsol Renewables is honored to support and learn from leaders and investors in the energy and climate industry. We believe it is important to continuously invest in talent, ideas, and collaboration across the energy value chain as we pursue our net zero by 2050 goal.

———

This article originally ran on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.

University of Houston secures $3.6M from DOE program to fund sustainable fuel production

freshly granted

A University of Houston-associated project was selected to receive $3.6 million from the U.S. Department of Energy’s Advanced Research Projects Agency-Energy that aims to transform sustainable fuel production.

Nonprofit research institute SRI is leading the project “Printed Microreactor for Renewable Energy Enabled Fuel Production” or PRIME-Fuel, which will try to develop a modular microreactor technology that converts carbon dioxide into methanol using renewable energy sources with UH contributing research.

“Renewables-to-liquids fuel production has the potential to boost the utility of renewable energy all while helping to lay the groundwork for the Biden-Harris Administration’s goals of creating a clean energy economy,” U.S. Secretary of Energy Jennifer M. Granholm says in an ARPA-E news release.

The project is part of ARPA-E’s $41 million Grid-free Renewable Energy Enabling New Ways to Economical Liquids and Long-term Storage program (or GREENWELLS, for short) that also includes 14 projects to develop technologies that use renewable energy sources to produce sustainable liquid fuels and chemicals, which can be transported and stored similarly to gasoline or oil, according to a news release.

Vemuri Balakotaiah and Praveen Bollini, faculty members of the William A. Brookshire Department of Chemical and Biomolecular Engineering, are co-investigators on the project. Rahul Pandey, is a UH alum, and the senior scientist with SRI and principal investigator on the project.

Teams working on the project will develop systems that use electricity, carbon dioxide and water at renewable energy sites to produce renewable liquid renewable fuels that offer a clean alternative for sectors like transportation. Using cheaper electricity from sources like wind and solar can lower production costs, and create affordable and cleaner long-term energy storage solutions.

“As a proud UH graduate, I have always been aware of the strength of the chemical and biomolecular engineering program at UH and kept myself updated on its cutting-edge research,” Pandey says in a news release. “This project had very specific requirements, including expertise in modeling transients in microreactors and the development of high-performance catalysts. The department excelled in both areas. When I reached out to Dr. Bollini and Dr. Bala, they were eager to collaborate, and everything naturally progressed from there.”

The PRIME-Fuel project will use cutting-edge mathematical modeling and SRI’s proprietary Co-Extrusion printing technology to design and manufacture the microreactor with the ability to continue producing methanol even when the renewable energy supply dips as low as 5 percent capacity. Researchers will develop a microreactor prototype capable of producing 30 MJe/day of methanol while meeting energy efficiency and process yield targets over a three-year span. When scaled up to a 100 megawatts electricity capacity plant, it can be capable of producing 225 tons of methanol per day at a lower cost. The researchers predict five years as a “reasonable” timeline of when this can hit the market.

“What we are building here is a prototype or proof of concept for a platform technology, which has diverse applications in the entire energy and chemicals industry,” Pandey continues. “Right now, we are aiming to produce methanol, but this technology can actually be applied to a much broader set of energy carriers and chemicals.”

Global industrial company Daikin makes deal with Houston Astros on stadium rename

big deal

The Houston Astros' home will get a new name on Jan. 1, becoming Daikin Park under an agreement through the 2039 season the team announced Monday.

The stadium opened as Enron Field in 2000 as part of a 30-year, $100 million agreement but the name was removed in March 2002 following Enron Corp.'s bankruptcy filing and the ballpark briefly became Astros Field.

It was renamed Minute Maid Park in June 2002 as part of a deal with The Minute Maid Co., a Houston-based subsidiary of The Coca-Cola Co. Then-Astros owner Drayton McLane said at the time the agreement was for 28 years and for more than $100 million.

The new deal is with Daikin Comfort Technologies North America Inc., a subsidiary of Daikin Industries Ltd., which is based in Japan and is a leading air conditioning company.

Minute Maid will remain an Astros partner through 2029, the team said.

In August, Daikin, which has its 4.2 million-square-foot Daikin Texas Technology Park in Waller, Texas, partnered with the city of Houston to provide advanced air conditioning and heating solutions to help homeowners with energy efficiency and general comfort. The company pledged install up to 30 horizontal discharge inverter FIT heat pump units over the next three years.