The Carbon to Value Initiative kicks off this week at Greentown Houston. Photo via GreentownLabs.com

A carbon innovation initiative in collaboration with Greentown Houston has named its new cohort.

The Carbon to Value Initiative (C2V Initiative) — a collaboration between NYU Tandon School of Engineering's Urban Future Lab (UFL), Greentown Labs, and Fraunhofer USA — has named nine startup participants for the fourth year of its carbontech accelerator program.

"Once again, the C2V Initiative has been able to select some of the most promising carbontech startups through a very competitive process with a 7 percent acceptance rate," Frederic Clerc, director of the C2V Initiative and interim managing director of UFL, says in a news release. "The diversity of this cohort, in its technologies, products, geographies, and stages, makes it an amazing snapshot of the rapidly evolving carbontech innovation landscape."

The cohort was selected from over a hundred applications from nearly 30 countries. In the six-month program, the nine companies gain access to the C2V Initiative's Carbontech Leadership Council, an invitation-only group of corporate, nonprofit, and government leaders who provide commercialization opportunities and identify avenues for technology validation, testing, and demonstration.

The year four cohort, according to the release, includes:

  • Ardent, from New Castle, Delaware, is a process technology company that is developing membrane-based solutions for point-source carbon capture and other chemical separations.
  • CarbonBlue, from Haifa, Israel, develops a chemical process that mineralizes and extracts CO2 from water, which then reabsorbs more atmospheric CO2.
  • MacroCycle, from Somerville, Massachusetts, develops a chemical recycling process to turn polyethylene terephthalate (PET) and polyester-fiber waste into "virgin-grade" plastics.
  • Maple Materials, from Richmond, California, develops an electrolysis process to convert CO2 into graphite and oxygen.
  • Oxylus Energy, from New Haven, Connecticut, develops a direct electrochemical process to convert CO2 into fuels and chemical feedstocks, such as methanol.
  • Phlair, from Munich, Germany, develops a renewable-energy-powered Direct Air Capture (DAC) system using an electrochemical process for acid and base generation.
  • Secant Fuel, from Montreal, Quebec, Canada, develops a one-step electrocatalytic process that converts flue gas into syngas.
  • RenewCO2, from Somerset, New Jersey, is developing an electrochemical process to convert CO2 into fuels and chemicals, such as sustainable aviation fuel (SAF) or propylene glycol.
  • Seabound, from London, England, builds carbon-capture equipment for new and existing ships.

"The depth and breadth of carbontech innovations represented in this applicant pool speaks volumes to this growing and dynamic industry around the world," adds Kevin Dutt, Interim CEO of Greentown Labs. "We're eager to support these nine impressive companies as they progress through this program and look forward to seeing how they engage with the CLC now and into the future."

The C2V Initiative will host a public Year 4 kickoff event on Sept. 19 at Greentown Houston and via livestream.

Texas has some room to improve when it comes to EV states, one report found — and more things to know this week. Photo via Getty Images

Texas loses speed among top EV states, apps open for Greentown program, and more things to know this week

take note

Editor's note: Dive headfirst into the new week with three quick things to catch up on in Houston's energy transition: applications for a Greentown Labs program has opened, Texas falls flat on a ranking of best EV states, and more.

Texas puts it in park near the bottom of list of best states for EV drivers

You’d think that producing tens of thousands of Teslas might help drive up Texas’ standing among the best states for owning an electric vehicle. To the contrary, Texas ranks among the worst states to be an EV owner.

A new list from EV Charger Reviews puts Texas in the No. 2 position among the worst states for owning an EV. Washington leads the pack of the worst EV states. Topping the list of the best states for EV owners is Maine, followed by Colorado and Vermont. Read more about the methodology.

Big deal: GridBeyond's $55M series C 

GridBeyond,which has its U.S. headquarters in Houston, raised its series C to support its growth in the the United States.

The round closed at €52 million, or around $55 million. Founded in 2010, GridBeyond's AI platform allows businesses to unlock the full potential of energy assets and prioritize sustainability, resilience, and affordability of energy.

"This funding, together with the support of our new partners, will enable us to expand our product offering and strengthen our leadership position in this space," Michael Phelan, co-founder and CEO of GridBeyond, says in a news release. “The newly completed financing round sets GridBeyond on the path to increase the reach of our intelligent energy platform and deliver world leading AI and powerful automation capabilities to smart grid and energy markets across the world." Read more details about the round.

Greentown Labs opens C2V Initiative apps

For the fourth year, the Carbon to Value Initiative, a multi-year collaboration from the Urban Future Lab at NYU Tandon School of Engineering, Greentown Labs, and Fraunhofer USA — has opened applications. The program is looking for "startups at Technology Readiness Level 4-7 that are developing carbontech innovations related to carbon conversion to added-value products; carbon capture; and carbon sequestration and removal," according to Greentown.

The selected cohort will have access to the C2V Initiative’s CLC, an invitation-only group of corporate, nonprofit, and government thought leaders across the energy industry. Startups will also each receive a $10,000 stipend to support their participation in the accelerator. Applications are open through June 21, 2024. To learn more about the program or to apply, click here.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

10+ exciting energy breakthroughs made by Houston teams in 2025

Year In Review

Editor's note: As 2025 comes to a close, we're revisiting the biggest headlines and major milestones of the energy sector this year. Here are the most exciting scientific breakthroughs made by Houstonians this year that are poised to shape the future of energy:

Rice University team develops eco-friendly method to destroy 'forever chemicals' in water

Rice University researchers have developed a new method for removing PFAS from water that works 100 times faster than traditional filters. Photo via Rice University.

Rice University researchers have teamed up with South Korean scientists to develop the first eco-friendly technology that captures and destroys toxic “forever chemicals,” or PFAS, in water. The Rice-led study centered on a layered double hydroxide (LDH) material made from copper and aluminum that could rapidly capture PFAS and be used to destroy the chemicals.

UH researchers make breakthrough in cutting carbon capture costs

UH carbon capture cost cutting

A team from UH has published two breakthrough studies that could help cut costs and boost efficiency in carbon capture. Photo courtesy UH.

A team of researchers at the University of Houston has made two breakthroughs in addressing climate change and potentially reducing the cost of capturing harmful emissions from power plants. Led by Professor Mim Rahimi at UH’s Cullen College of Engineering, the team first introduced a membraneless electrochemical process that cuts energy requirements and costs for amine-based carbon dioxide capture during the acid gas sweetening process.The second breakthrough displayed a reversible flow battery architecture that absorbs CO2 during charging and releases it upon discharge.

Houston team’s discovery brings solid-state batteries closer to EV use

Houston researchers have uncovered why solid-state batteries break down and what could be done to slow the process. Photo via Getty Images.

A team of researchers from the University of Houston, Rice University and Brown University has uncovered new findings that could extend battery life and potentially change the electric vehicle landscape. Their work deployed a powerful, high-resolution imaging technique known as operando scanning electron microscopy to better understand why solid-state batteries break down and what could be done to slow the process.

Houston researchers make breakthrough on electricity-generating bacteria

A team of Rice researchers, including Caroline Ajo-Franklin and Biki Bapi Kundu, has uncovered how certain bacteria breathe by generating electricity. Photo by Jeff Fitlow/Rice University.

Research from Rice University that merges biology with electrochemistry has uncovered new findings on how some bacteria generate electricity. Research showed how some bacteria use compounds called naphthoquinones, rather than oxygen, to transfer electrons to external surfaces in a process known as extracellular respiration. In other words, the bacteria are exhale electricity as they breathe. This process has been observed by scientists for years, but the Rice team's deeper understanding of its mechanism is a major breakthrough, with implications for the clean energy and industrial biotechnology sectors, according to the university.

Rice researchers' quantum breakthrough could pave the way for next-gen superconductors

Researchers from Rice University say their recent findings could revolutionize power grids, making energy transmission more efficient. Image via Getty Images.

A study from researchers at Rice University could lead to future advances in superconductors with the potential to transform energy use. The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials. The materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

UH researchers develop breakthrough material to boost efficiency of sodium-ion batteries

A team at the University of Houston is changing the game for sodium-ion batteries. Photo via Getty Images

A research lab at the University of Houston developed a new type of material for sodium-ion batteries that could make them more efficient and boost their energy performance. The Canepa Research Laboratory is working on a new material called sodium vanadium phosphate, which improves sodium-ion battery performance by increasing the energy density. This material brings sodium technology closer to competing with lithium-ion batteries, according to the researchers.

Houston researchers make headway on developing low-cost sodium-ion batteries

Houston researchers make headway on developing low-cost sodium-ion batteries

Rice's Atin Pramanik and a team in Pulickel Ajayan's lab shared new findings that offer a sustainable alternative to lithium batteries by enhancing sodium and potassium ion storage. Photo by Jeff Fitlow/Courtesy Rice University

A new study by researchers from Rice University’s Department of Materials Science and NanoEngineering, Baylor University and the Indian Institute of Science Education and Research Thiruvananthapuram has introduced a solution that could help develop more affordable and sustainable sodium-ion batteries. The team worked with tiny cone- and disc-shaped carbon materials from oil and gas industry byproducts with a pure graphitic structure. The forms allow for more efficient energy storage with larger sodium and potassium ions, which is a challenge for anodes in battery research. Sodium and potassium are more widely available and cheaper than lithium.

Houston scientists develop 'recharge-to-recycle' reactor for lithium-ion batteries

Rice University scientists' “recharge-to-recycle” reactor has major implications for the electric vehicle sector. Photo courtesy Jorge Vidal/Rice University.

Engineers at Rice University have developed a cleaner, innovative process to turn end-of-life lithium-ion battery waste into new lithium feedstock. The findings demonstrate how the team’s new “recharge-to-recycle” reactor recharges the battery’s waste cathode materials to coax out lithium ions into water. The team was then able to form high-purity lithium hydroxide, which was clean enough to feed directly back into battery manufacturing. The study has major implications for the electric vehicle sector, which significantly contributes to the waste stream from end-of-life battery packs.

Houston researchers develop strong biomaterial that could replace plastic

A team led by M.A.S.R. Saadi and Muhammad Maksud Rahman has developed a biomaterial that they hope could be used for the “next disposable water bottle." Photo courtesy Rice University.

Collaborators from two Houston universities are leading the way in engineering a biomaterial into a scalable, multifunctional material that could potentially replace plastic. The study introduced a biosynthesis technique that aligns bacterial cellulose fibers in real-time, which resulted in robust biopolymer sheets with “exceptional mechanical properties.” Ultimately, the scientists hope this discovery could be used for the “next disposable water bottle,” which would be made by biodegradable biopolymers in bacterial cellulose, an abundant resource on Earth. Additionally, the team sees applications for the materials in the packaging, breathable textiles, electronics, food and energy sectors.

Houston researchers reach 'surprising' revelation in materials recycling efforts

A team led by Matteo Pasquali, director of Rice’s Carbon Hub, has unveiled how carbon nanotube fibers can be a sustainable alternative to materials like steel, copper and aluminum. Photo by Jeff Fitlow/ Courtesy Rice University

Researchers at Rice University have demonstrated how carbon nanotube (CNT) fibers can be fully recycled without any loss in their structure or properties. The discovery shows that CNT fibers could be used as a sustainable alternative to traditional materials like metals, polymers and the larger, harder-to-recycle carbon fibers, which the team hopes can pave the way for more sustainable and efficient recycling efforts.

UH lands $1M NSF grant to train future critical minerals workforce

workforce pipeline

The University of Houston has launched a $1 million initiative funded by the National Science Foundation to address the gap in the U.S. mineral industry and bring young experts to the field.

The program will bring UH and key industry partners together to expand workforce development and drive research that fuels innovation. It will be led by Xuqing "Jason" Wu, an associate professor of information science technology.

“The program aims to reshape public perception of the critical minerals industry, highlighting its role in energy, defense and advanced manufacturing,” Wu said in a news release. “Our program aims to showcase the industry’s true, high-tech nature.”

The project will sponsor 10 high school students and 10 community college students in Houston each year. It will include industry mentors and participation in a four-week training camp that features “immersive field-based learning experiences.”

“High school and community college students often lack exposure to career pathways in mining, geoscience, materials science and data science,” Wu added in the release. “This project is meant to ignite student interest and strengthen the U.S. workforce pipeline in the minerals industry by equipping students with technical skills, industry knowledge and career readiness.”

This interdisciplinary initiative will also work with co-principal investigators across fields at UH:

  • Jiajia Sun, Earth & Atmospheric Sciences
  • Yan Yao and Jiefu Chen, Electrical and Computer Engineering
  • Yueqin Huang, Information Science Technology

According to UH, minerals and rare earth elements have become “essential building blocks of modern life” and are integral components in technology and devices, roads, the energy industry and more.