Kanin Energy has been named a top investible startup. Photo via kaninenergy.com
A Canadian organization has called out the top 50 most investible energy transition companies in the country, and one Canada-founded, Houston-based startup made the cut.
The 2023 Foresight 50, Foresight Canada's 50 Most Investible Cleantech Ventures, sought to highlight the top companies moving the needle toward Net Zero. Kanin Energy — founded by CEO Janice Tran in Calgary in 2020 but relocated to Houston by way of Greentown Labs — developed a waste-heat-to-power concept for generating clean energy.
“The ventures included in this year’s Foresight 50 are nothing short of awe-inspiring. These game-changing innovators are scaling the critical climate solutions we need to solve the world’s most urgent climate challenges and accelerate the transition to net zero. Congratulations and thank you for all you are doing for Canadian cleantech," says Jeanette Jackson, CEO of Foresight Canada, in a news release.
According to the organization, 41 cleantech investors evaluated detailed profiles the companies submitted. They looked at investibility, potential environmental and employment impact, leadership and team, and probability of success, according to Foresight Canada.
"Canada has no shortage of inspiring innovators with the potential to solve global climate challenges. But these companies struggle to attract the long-term capital and recognition needed to make their businesses competitive on a global scale," Kanin Energy's team writes in its news release.
A year ago, the Kanin team visited Houston to see if the city could be a fit for an office. In July of 2022, Tran opened Kanin Energy offices in Greentown Labs.
“We’re hiring and building our team office out of Greentown. It’s been really great for us,” she previously told EnergyCapital.
Earlier this month, Kanin Energy was named a finalist in the 2023 Houston Innovation Awards.
Corrosion is not something most people think about, but for Houston's industrial backbone pipelines, refineries, chemical plants, and water infrastructure, it is a silent and costly threat. Replacing damaged steel and overusing chemicals adds hundreds of millions of tons of carbon emissions every year. Despite the scale of the problem, corrosion detection has barely changed in decades.
In a recent episode of the Energy Tech Startups Podcast, Anwar Sadek, founder and CEO of Corrolytics, explained why the traditional approach is not working and how his team is delivering real-time visibility into one of the most overlooked challenges in the energy transition.
From Lab Insight to Industrial Breakthrough
Anwar began as a researcher studying how metals degrade and how microbes accelerate corrosion. He quickly noticed a major gap. Companies could detect the presence of microorganisms, but they could not tell whether those microbes were actually causing corrosion or how quickly the damage was happening. Most tests required shipping samples to a lab and waiting months for results, long after conditions inside the asset had changed.
That gap inspired Corrolytics' breakthrough. The company developed a portable, real-time electrochemical test that measures microbial corrosion activity directly from fluid samples. No invasive probes. No complex lab work. Just the immediate data operators can act on.
“It is like switching from film to digital photography,” Anwar says. “What used to take months now takes a couple of hours.”
Why Corrosion Matters in Houston's Energy Transition
Houston's energy transition is a blend of innovation and practicality. While the world builds new low-carbon systems, the region still depends on existing industrial infrastructure. Keeping those assets safe, efficient, and emission-conscious is essential.
This is where Corrolytics fits in. Every leak prevented, every pipeline protected, and every unnecessary gallon of biocide avoided reduces emissions and improves operational safety. The company is already seeing interest across oil and gas, petrochemicals, water and wastewater treatment, HVAC, industrial cooling, and biofuels. If fluids move through metal, microbial corrosion can occur, and Corrolytics can detect it.
Because microbes evolve quickly, slow testing methods simply cannot keep up. “By the time a company gets lab results, the environment has changed completely,” Anwar explains. “You cannot manage what you cannot measure.”
A Scientist Steps Into the CEO Role
Anwar did not plan to become a CEO. But through the National Science Foundation's ICorps program, he interviewed more than 300 industry stakeholders. Over 95 percent cited microbial corrosion as a major issue with no effective tool to address it. That validation pushed him to transform his research into a product.
Since then, Corrolytics has moved from prototype to real-world pilots in Brazil and Houston, with early partners already using the technology and some preparing to invest. Along the way, Anwar learned to lead teams, speak the language of industry, and guide the company through challenges. “When things go wrong, and they do, it is the CEO's job to steady the team,” he says.
Why Houston
Relocating to Houston accelerated everything. Customers, partners, advisors, and manufacturing talent are all here. For industrial and energy tech startups, Houston offers an ecosystem built for scale.
What's Next
Corrolytics is preparing for broader pilots, commercial partnerships, and team growth as it continues its fundraising efforts. For anyone focused on asset integrity, emissions reduction, or industrial innovation, this is a company to watch.
Energy Tech Startups Podcast is hosted by Jason Ethier and Nada Ahmed. It delves into Houston's pivotal role in the energy transition, spotlighting entrepreneurs and industry leaders shaping a low-carbon future.