Kanin Energy has been named a top investible startup. Photo via kaninenergy.com

A Canadian organization has called out the top 50 most investible energy transition companies in the country, and one Canada-founded, Houston-based startup made the cut.

The 2023 Foresight 50, Foresight Canada's 50 Most Investible Cleantech Ventures, sought to highlight the top companies moving the needle toward Net Zero. Kanin Energy — founded by CEO Janice Tran in Calgary in 2020 but relocated to Houston by way of Greentown Labs — developed a waste-heat-to-power concept for generating clean energy.

“The ventures included in this year’s Foresight 50 are nothing short of awe-inspiring. These game-changing innovators are scaling the critical climate solutions we need to solve the world’s most urgent climate challenges and accelerate the transition to net zero. Congratulations and thank you for all you are doing for Canadian cleantech," says Jeanette Jackson, CEO of Foresight Canada, in a news release.

According to the organization, 41 cleantech investors evaluated detailed profiles the companies submitted. They looked at investibility, potential environmental and employment impact, leadership and team, and probability of success, according to Foresight Canada.

"Canada has no shortage of inspiring innovators with the potential to solve global climate challenges. But these companies struggle to attract the long-term capital and recognition needed to make their businesses competitive on a global scale," Kanin Energy's team writes in its news release.

A year ago, the Kanin team visited Houston to see if the city could be a fit for an office. In July of 2022, Tran opened Kanin Energy offices in Greentown Labs.

“We’re hiring and building our team office out of Greentown. It’s been really great for us,” she previously told EnergyCapital.

Earlier this month, Kanin Energy was named a finalist in the 2023 Houston Innovation Awards.

The six finalists for the sustainability category for the 2023 Houston Innovation Awards weigh in on their challenges overcome. Photos courtesy

4 biggest challenges of Houston-based sustainability startups

Houston innovation awards

Six Houston-area sustainability startups have been named finalists in the 2023 Houston Innovation Awards, but they didn't achieve this recognition — as well as see success for their businesses — without any obstacles.

The finalists were asked what their biggest challenges have been. From funding to market adoption, the sustainability companies have had to overcome major obstacles to continue to develop their businesses.

The awards program — hosted by EnergyCapital's sister site, InnovationMap, and Houston Exponential — will name its winners on November 8 at the Houston Innovation Awards. The program was established to honor the best and brightest companies and individuals from the city's innovation community. Eighteen energy startups were named as finalists across all categories, but the following responses come from the finalists in the sustainability category specifically.

    Click here to secure your tickets to see who wins.

    1. Securing a commercial pilot

    "As an early-stage clean energy developer, we struggled to convince key suppliers to work on our commercial pilot project. Suppliers were skeptical of our unproven technology and, given limited inventory from COVID, preferred to prioritize larger clients. We overcame this challenge by bringing on our top suppliers as strategic investors. With a long-term equity stake in Fervo, leading oilfield services companies were willing to provide Fervo with needed drilling rigs, frack crews, pumps, and other equipment." — Tim Latimer, founder and CEO of Fervo Energy

    2. Finding funding

    "Securing funding in Houston as a solo cleantech startup founder and an immigrant with no network. Overcome that by adopting a milestone-based fundraising approach and establishing credibility through accelerator/incubator programs." — Anas Al Kassas, CEO and founder of INOVUES

    "The biggest challenge has been finding funding. Most investors are looking towards software development companies as the capital costs are low in case of a risk. Geothermal costs are high, but it is physical technology that needs to be implemented to safety transition the energy grid to reliable, green power." — Cindy Taff, CEO of Sage Geosystems

    3. Market adoption

    "Market adoption by convincing partners and government about WHP as a solution, which is resource-intensive. Making strides by finding the correct contacts to educate." — Janice Tran, CEO and co-founder of Kanin Energy

    "We are creating a brand new financial instrument at the intersection of carbon markets and power markets, both of which are complicated and esoteric. Our biggest challenge has been the cold-start problem associated with launching a new product that has effectively no adoption. We tackled this problem by leading the Energy Storage Solutions Consortium (a group of corporates and battery developers looking for sustainability solutions in the power space), which has opened up access to customers on both sides of our marketplace. We have also leveraged our deep networks within corporate power procurement and energy storage development to talk to key decision-makers at innovative companies with aggressive climate goals to become early adopters of our products and services." — Emma Konet, CTO and co-founder of Tierra Climate

    4. Long scale timelines

    "Scaling and commercializing industrial technologies takes time. We realized this early on and designed the eXERO technology to be scalable from the onset. We developed the technology at the nexus of traditional electrolysis and conventional gas processing, taking the best of both worlds while avoiding their main pitfalls." — Claus Nussgruber, CEO of Utility Global

    Kanin Energy set up shop in Greentown Labs last year to grow its impact on the energy transition. Photo via Getty Images

    This energy transition startup taps Houston to grow, build its waste-heat-to-power tech

    eyes on hou

    Waste heat is everywhere, but in Houston, the Energy Capital of the World, it is becoming a hot commodity. What is it? Janice Tran, CEO of Kanin Energy, uses the example of turning ore into steel.

    “There’s a lot of heat involved in that chemical process,” she says. “It’s a waste of energy.”

    But Kanin Energy can do something about that. Its waste-heat-to-power, or WHP, concept uses a technology called organic rankine cycle. Tran explains that heat drives a turbine that generates electricity.

    “It’s a very similar concept to a steam engine,” she says. Tran adds that the best term for what Kanin Energy does is “waste heat recovery.”

    Emission-free power should be its own virtuous goal, but for companies creating waste heat, it can be an expensive endeavor both in terms of capital and human resources to work on energy transition solutions. But Kanin Energy helps companies to decarbonize with no cost to them.

    “We can pay for the projects, then we pay the customers for that heat. We turn a waste product into a revenue stream for our customer,” Tran explains. Kanin Energy then sells the clean power back to the facility or to the grid, hence decarbonizing the facility gratis. Financing, construction, and operations are all part of the package.

    Kanin Energy began at the height of the COVID-19 pandemic, in the spring of 2020.

    “We started like a lotus. A lotus grows in mud — you start in the worst conditions and everything is better and easier from there,” says Tran.

    That tough birth has helped provide the team with a discipline and thoughtfulness that’s been key to the company’s culture. Remote work has forced the team to get procedures clearly in place and react efficiently.

    Back in May of 2020, its inception took place in Calgary. But the team, which also includes CDO Dan Fipke and CTO Jake Bainbridge, began to notice that many of their customers were either based in Houston or had Houston ties.

    A year ago, the Kanin team visited Houston to see if the city could be a fit for an office. In July of 2022, Tran opened Kanin Energy offices in Greentown Labs.

    “We’re hiring and building our team office out of Greentown. It’s been really great for us,” she says.

    With the company now in its commercialization stage, Tran says that becoming part of the Houston energy ecosystem has been invaluable for Kanin.

    The investments being made in climate tech and in energy transition make Space City the right place for the company. For Canadian-born Kanin Energy, Houston is now home. Investors across the nation, including Texas, are now helping Kanin to blossom, much like the lotus.

    Janice Tran is the CEO and co-founder of Kanin Energy. Photo via LinkedIn

    ------

    This article originally ran on InnovationMap.

    Ad Placement 300x100
    Ad Placement 300x600

    CultureMap Emails are Awesome

    Houston companies scoop up $31 million in funds from DOE, EPA methane emissions program

    fresh funds

    The U.S. Department of Energy and the U.S. Environmental Protection Agency announced the selection of seven projects from Houston companies to receive funding through the Methane Emissions Reduction Program.

    The projects are among 43 others nationwide, including 12 from Texas, that reduce, monitor, measure, and quantify methane emissions from the oil and gas sector. The DOE and EPA awarded $850 million in total through the program.

    The Houston companies picked up $31.7 million in federal funding through the program in addition to more than $9.5 million in non-federal dollars.

    “I’m excited about the opportunities these will create internally but even more so the creation of jobs and training opportunities for the communities in which we work,” Scott McCurdy, Encino Environmental Services CEO, said in a news release. His company received awards for two projects.

    “These projects will allow us to further support and strengthen the U.S. Energy industry’s ability to deliver clean, reliable, and affordable energy globally,” he added.

    The Houston-area awards included:

    DaphneTech USA LLC

    Total funding: $5.8 million (approximately $4.5 million in federal, $1.3 million in non-federal)

    The award was granted for the company’s Daphne and Williams Methane Slip Abatement Plasma-Catalyst Scale-Up project. Daphne will study how its SlipPure technology, a novel exhaust gas cleaning system that abates methane and exhaust gas pollution from natural gas-fueled engines, can be economically viable across multiple engine types and operating conditions.

    Baker Hughes Energy Transition LLC 

    Total funding: $7.47 million (approximately $6 million in federal, $1.5 million in non-federal)

    The award was granted for the company’s Advancing Low Cost CH4 Emissions Reduction from Flares through Large Scale Deployment of Retrofittable and Adaptive Technology project. The project aims to develop a scalable, integrated methane emissions reduction system for flares based on optical gas imaging and estimation algorithms.

    Encino Environmental Services

    Total funding: $15.17 million (approximately $11 million in federal, $4.17 million in non-federal)

    The award was granted for two projects. The Advanced Methane Reduction System: Integrating Infrared and Visual Imaging to Assess Net Heating Value at the Combustion Zone and Determine Combustion Efficiency to Enhance Flaring Performance project aims to develop and deploy an advanced continuous emissions monitoring system. It’s Advancing Methane Emissions Reduction through Innovative Technology project will develop and deploy a technology using sensors and composite materials to address emissions originating in storage tanks.

    Envana Software Solutions

    Total funding: $5.26 million (approximately $4.2 million in federal, $1 million in non-federal)

    The award was granted for the company’s Leak Detection and Reduction Software to Identify Methane Emissions and Trigger Mitigation at Oil and Gas Production Facilities Based on SCADA Data project. It aims to improve its Recon software for monitoring methane emissions and develop partnerships with local universities and organizations.

    Capwell Services Inc.

    Total funding: $4.19 million (approximately $3.3 million in federal, $837,000 in non-federal)

    The award was granted for its Methane Emissions Abatement Technology for Low-Flow and Intermittent Emission Sources project. It aims to to deploy and field-test a methane abatement unit and improve air quality and health outcomes for communities near production facilities and establish field technician internships for local residents.

    Blue Sky Measurements 

    Total funding: $3.41 million (approximately $2.7 million in federal, $683,000 in non-federal)

    The award was granted for its Field Validation of Novel Fixed Position Optical Sensor for Fugitive Methane Emission Detection Quantification and Location with Real-Time Notification for Rapid Mitigation project. It aims to field test an optical sensing technology at six well sites in the Permian Basin.

    Southern Methodist University, The University of Texas at Austin, Texas A&M Engineering Experiment Station and Hyliion Inc. were other Texas-based organizations to earn awards. See the full list of projects here.

    Texas university's 'WaterHub' will dramatically reduce water usage by 40%

    Sustainable Move

    A major advancement in sustainability is coming to one Texas university. A new UT WaterHub at the University of Texas at Austin will be the largest facility of its kind in the U.S. and will transform how the university manages its water resources.

    It's designed to work with natural processes instead of against them for water savings of an estimated 40 percent. It's slated for completion in late 2027.

    The university has had an active water recovery program since the 1980s. Still, water is becoming an increasing concern in Austin. According to Texas Living Waters, a coalition of conservation groups, Texas loses enough water annually to fill Lady Bird Lake roughly 89 times over.

    As Austin continues to expand and face water shortages, the region's water supply faces increased pressure. The UT WaterHub plans to address this challenge by recycling water for campus energy operations, helping preserve water resources for both the university and local communities.

    The 9,600-square-foot water treatment facility will use an innovative filtration approach. To reduce reliance on expensive machinery and chemicals, the system uses plants to naturally filter water and gravity to pull it in the direction it needs to go. Used water will be gathered from a new collection point near the Darrell K Royal Texas Memorial Stadium and transported to the WaterHub, located in the heart of the engineering district. The facility's design includes a greenhouse viewable to the public, serving as an interactive learning space.

    Beyond water conservation, the facility is designed to protect the university against extreme weather events like winter storms. This new initiative will create a reliable backup water supply while decreasing university water usage, and will even reduce wastewater sent to the city by up to 70 percent.

    H2O Innovation, UT’s collaborator in this project, specializes in water solutions, helping organizations manage their water efficiently.

    "By combining cutting-edge technology with our innovative financing approach, we’re making it easier for organizations to adopt sustainable water practices that benefit both their bottom line and the environment, paving a step forward in water positivity,” said H2O Innovation president and CEO Frédéric Dugré in a press release.

    The university expects significant cost savings with this project, since it won't have to spend as much on buying water from the city or paying fees to dispose of used water. Over the next several years, this could add up to millions of dollars.

    ---

    A version of this story originally appeared on our sister site, CultureMap Austin.

    Report: Texas solar power, battery storage helped stabilize grid in summer 2024, but challenges remain

    by the numbers

    Research from the Federal Reserve Bank of Dallas shows that solar power and battery storage capacity helped stabilize Texas’ electric grid last summer.

    Between June 1 and Aug. 31, solar power met nearly 25 percent of midday electricity demand within the Electric Reliability Council of Texas (ERCOT) power grid. Rising solar and battery output in ERCOT assisted Texans during a summer of triple-digit heat and record load demands, but the report fears that the state’s power load will be “pushed to its limits” soon.

    The report examined how the grid performed during more demanding hours. At peak times, between 11 a.m. and 2 p.m. in the summer of 2024, solar output averaged nearly 17,000 megawatts compared with 12,000 megawatts during those hours in the previous year. Between 6 p.m. and 9 p.m., discharge from battery facilities averaged 714 megawatts in 2024 after averaging 238 megawatts for those hours in 2023. Solar and battery output have continued to grow since then, according to the report.

    “Batteries made a meaningful contribution to what those shoulder periods look like and how much scarcity we get into during these peak events,” ERCOT CEO Pablo Vegas said at a board of directors conference call.

    Increases in capacity from solar and battery-storage power in 2024 also eclipsed those of 2023. In 2023 ECOT added 4,570 megawatts of solar, compared to adding nearly 9,700 megawatts in 2024. Growth in battery storage capacity also increased from about 1,500 megawatts added in 2023 to more than 4,000 megawatts added in 2024. Natural gas capacity also saw increases while wind capacity dropped by about 50 percent.

    Texas’ installation of utility-scale solar surpassed California’s in the spring of last year, and jumped from 1,900 megawatts in 2019 to over 20,000 megawatts in 2024 with solar meeting about 50 percent of Texas' peak power demand during some days.

    While the numbers are encouraging, the report states that there could be future challenges, as more generating capacity will be required due to data center construction and broader electrification trends. The development of generating more capacity will rely on multiple factors like price signals and market conditions that invite more baseload and dispatchable generating capacity, which includes longer-duration batteries, and investment in power purchase agreements and other power arrangements by large-scale consumers, according to the report.

    Additionally, peak demand during winter freezes presents challenges not seen in the summer. For example, in colder months, peak electricity demand often occurs in the early morning before solar energy is available, and it predicts that current battery storage may be insufficient to meet the demand. The analysis indicated a 50% chance of rolling outages during a cold snap similar to December 2022 and an 80% chance if conditions mirror the February 2021 deep freeze at the grid’s current state.

    The report also claimed that ERCOT’s energy-only market design and new incentive structures, such as the Texas Energy Fund, do not appear to be enough to meet the predicted future magnitude and speed of load growth.

    Read the full report here.