Kanin Energy has been named a top investible startup. Photo via kaninenergy.com

A Canadian organization has called out the top 50 most investible energy transition companies in the country, and one Canada-founded, Houston-based startup made the cut.

The 2023 Foresight 50, Foresight Canada's 50 Most Investible Cleantech Ventures, sought to highlight the top companies moving the needle toward Net Zero. Kanin Energy — founded by CEO Janice Tran in Calgary in 2020 but relocated to Houston by way of Greentown Labs — developed a waste-heat-to-power concept for generating clean energy.

“The ventures included in this year’s Foresight 50 are nothing short of awe-inspiring. These game-changing innovators are scaling the critical climate solutions we need to solve the world’s most urgent climate challenges and accelerate the transition to net zero. Congratulations and thank you for all you are doing for Canadian cleantech," says Jeanette Jackson, CEO of Foresight Canada, in a news release.

According to the organization, 41 cleantech investors evaluated detailed profiles the companies submitted. They looked at investibility, potential environmental and employment impact, leadership and team, and probability of success, according to Foresight Canada.

"Canada has no shortage of inspiring innovators with the potential to solve global climate challenges. But these companies struggle to attract the long-term capital and recognition needed to make their businesses competitive on a global scale," Kanin Energy's team writes in its news release.

A year ago, the Kanin team visited Houston to see if the city could be a fit for an office. In July of 2022, Tran opened Kanin Energy offices in Greentown Labs.

“We’re hiring and building our team office out of Greentown. It’s been really great for us,” she previously told EnergyCapital.

Earlier this month, Kanin Energy was named a finalist in the 2023 Houston Innovation Awards.

The six finalists for the sustainability category for the 2023 Houston Innovation Awards weigh in on their challenges overcome. Photos courtesy

4 biggest challenges of Houston-based sustainability startups

Houston innovation awards

Six Houston-area sustainability startups have been named finalists in the 2023 Houston Innovation Awards, but they didn't achieve this recognition — as well as see success for their businesses — without any obstacles.

The finalists were asked what their biggest challenges have been. From funding to market adoption, the sustainability companies have had to overcome major obstacles to continue to develop their businesses.

The awards program — hosted by EnergyCapital's sister site, InnovationMap, and Houston Exponential — will name its winners on November 8 at the Houston Innovation Awards. The program was established to honor the best and brightest companies and individuals from the city's innovation community. Eighteen energy startups were named as finalists across all categories, but the following responses come from the finalists in the sustainability category specifically.

    Click here to secure your tickets to see who wins.

    1. Securing a commercial pilot

    "As an early-stage clean energy developer, we struggled to convince key suppliers to work on our commercial pilot project. Suppliers were skeptical of our unproven technology and, given limited inventory from COVID, preferred to prioritize larger clients. We overcame this challenge by bringing on our top suppliers as strategic investors. With a long-term equity stake in Fervo, leading oilfield services companies were willing to provide Fervo with needed drilling rigs, frack crews, pumps, and other equipment." — Tim Latimer, founder and CEO of Fervo Energy

    2. Finding funding

    "Securing funding in Houston as a solo cleantech startup founder and an immigrant with no network. Overcome that by adopting a milestone-based fundraising approach and establishing credibility through accelerator/incubator programs." — Anas Al Kassas, CEO and founder of INOVUES

    "The biggest challenge has been finding funding. Most investors are looking towards software development companies as the capital costs are low in case of a risk. Geothermal costs are high, but it is physical technology that needs to be implemented to safety transition the energy grid to reliable, green power." — Cindy Taff, CEO of Sage Geosystems

    3. Market adoption

    "Market adoption by convincing partners and government about WHP as a solution, which is resource-intensive. Making strides by finding the correct contacts to educate." — Janice Tran, CEO and co-founder of Kanin Energy

    "We are creating a brand new financial instrument at the intersection of carbon markets and power markets, both of which are complicated and esoteric. Our biggest challenge has been the cold-start problem associated with launching a new product that has effectively no adoption. We tackled this problem by leading the Energy Storage Solutions Consortium (a group of corporates and battery developers looking for sustainability solutions in the power space), which has opened up access to customers on both sides of our marketplace. We have also leveraged our deep networks within corporate power procurement and energy storage development to talk to key decision-makers at innovative companies with aggressive climate goals to become early adopters of our products and services." — Emma Konet, CTO and co-founder of Tierra Climate

    4. Long scale timelines

    "Scaling and commercializing industrial technologies takes time. We realized this early on and designed the eXERO technology to be scalable from the onset. We developed the technology at the nexus of traditional electrolysis and conventional gas processing, taking the best of both worlds while avoiding their main pitfalls." — Claus Nussgruber, CEO of Utility Global

    Kanin Energy set up shop in Greentown Labs last year to grow its impact on the energy transition. Photo via Getty Images

    This energy transition startup taps Houston to grow, build its waste-heat-to-power tech

    eyes on hou

    Waste heat is everywhere, but in Houston, the Energy Capital of the World, it is becoming a hot commodity. What is it? Janice Tran, CEO of Kanin Energy, uses the example of turning ore into steel.

    “There’s a lot of heat involved in that chemical process,” she says. “It’s a waste of energy.”

    But Kanin Energy can do something about that. Its waste-heat-to-power, or WHP, concept uses a technology called organic rankine cycle. Tran explains that heat drives a turbine that generates electricity.

    “It’s a very similar concept to a steam engine,” she says. Tran adds that the best term for what Kanin Energy does is “waste heat recovery.”

    Emission-free power should be its own virtuous goal, but for companies creating waste heat, it can be an expensive endeavor both in terms of capital and human resources to work on energy transition solutions. But Kanin Energy helps companies to decarbonize with no cost to them.

    “We can pay for the projects, then we pay the customers for that heat. We turn a waste product into a revenue stream for our customer,” Tran explains. Kanin Energy then sells the clean power back to the facility or to the grid, hence decarbonizing the facility gratis. Financing, construction, and operations are all part of the package.

    Kanin Energy began at the height of the COVID-19 pandemic, in the spring of 2020.

    “We started like a lotus. A lotus grows in mud — you start in the worst conditions and everything is better and easier from there,” says Tran.

    That tough birth has helped provide the team with a discipline and thoughtfulness that’s been key to the company’s culture. Remote work has forced the team to get procedures clearly in place and react efficiently.

    Back in May of 2020, its inception took place in Calgary. But the team, which also includes CDO Dan Fipke and CTO Jake Bainbridge, began to notice that many of their customers were either based in Houston or had Houston ties.

    A year ago, the Kanin team visited Houston to see if the city could be a fit for an office. In July of 2022, Tran opened Kanin Energy offices in Greentown Labs.

    “We’re hiring and building our team office out of Greentown. It’s been really great for us,” she says.

    With the company now in its commercialization stage, Tran says that becoming part of the Houston energy ecosystem has been invaluable for Kanin.

    The investments being made in climate tech and in energy transition make Space City the right place for the company. For Canadian-born Kanin Energy, Houston is now home. Investors across the nation, including Texas, are now helping Kanin to blossom, much like the lotus.

    Janice Tran is the CEO and co-founder of Kanin Energy. Photo via LinkedIn

    ------

    This article originally ran on InnovationMap.

    Ad Placement 300x100
    Ad Placement 300x600

    CultureMap Emails are Awesome

    Houston energy expert: How the U.S. can turn carbon into growth

    Guets Column

    For the past 40 years, climate policy has often felt like two steps forward, one step back. Regulations shift with politics, incentives get diluted, and long-term aspirations like net-zero by 2050 seem increasingly out of reach. Yet greenhouse gases continue to rise, and the challenges they pose are not going away.

    This matters because the costs are real. Extreme weather is already straining U.S. power grids, damaging homes, and disrupting supply chains. Communities are spending more on recovery while businesses face rising risks to operations and assets. So, how can the U.S. prepare and respond?

    The Baker Institute Center for Energy Studies (CES) points to two complementary strategies. First, invest in large-scale public adaptation to protect communities and infrastructure. Second, reframe carbon as a resource, not just a waste stream to be reduced.

    Why Focusing on Emissions Alone Falls Short

    Peter Hartley argues that decades of global efforts to curb emissions have done little to slow the rise of CO₂. International cooperation is difficult, the costs are felt immediately, and the technologies needed are often expensive. Emissions reduction has been the central policy tool for decades, and it has been neither sufficient nor effective.

    One practical response is adaptation, which means preparing for climate impacts we can’t avoid. Some of these measures are private, taken by households or businesses to reduce their own risks, such as farmers shifting crop types, property owners installing fire-resistant materials, or families improving insulation. Others are public goods that require policy action. These include building stronger levees and flood defenses, reinforcing power grids, upgrading water systems, revising building codes, and planning for wildfire risks. Such efforts protect people today while reducing long-term costs, and they work regardless of the source of extreme weather. Adaptation also does not depend on global consensus; each country, state, or city can act in its own interest. Many of these measures even deliver benefits beyond weather resilience, such as stronger infrastructure and improved security against broader threats.

    McKinsey research reinforces this logic. Without a rapid scale-up of climate adaptation, the U.S. will face serious socioeconomic risks. These include damage to infrastructure and property from storms, floods, and heat waves, as well as greater stress on vulnerable populations and disrupted supply chains.

    Making Carbon Work for Us

    While adaptation addresses immediate risks, Ken Medlock points to a longer-term opportunity: turning carbon into value.

    Carbon can serve as a building block for advanced materials in construction, transportation, power transmission, and agriculture. Biochar to improve soils, carbon composites for stronger and lighter products, and next-generation fuels are all examples. As Ken points out, carbon-to-value strategies can extend into construction and infrastructure. Beyond creating new markets, carbon conversion could deliver lighter and more resilient materials, helping the U.S. build infrastructure that is stronger, longer-lasting, and better able to withstand climate stress.

    A carbon-to-value economy can help the U.S. strengthen its manufacturing base and position itself as a global supplier of advanced materials.

    These solutions are not yet economic at scale, but smart policies can change that. Expanding the 45Q tax credit to cover carbon use in materials, funding research at DOE labs and universities, and supporting early markets would help create the conditions for growth.

    Conclusion

    Instead of choosing between “doing nothing” and “net zero at any cost,” we need a third approach that invests in both climate resilience and carbon conversion.

    Public adaptation strengthens and improves the infrastructure we rely on every day, including levees, power grids, water systems, and building standards that protect communities from climate shocks. Carbon-to-value strategies can complement these efforts by creating lighter, more resilient carbon-based infrastructure.

    CES suggests this combination is a pragmatic way forward. As Peter emphasizes, adaptation works because it is in each nation’s self-interest. And as Ken reminds us, “The U.S. has a comparative advantage in carbon. Leveraging it to its fullest extent puts the U.S. in a position of strength now and well into the future.”

    -----------

    Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally appeared on LinkedIn.

    UH launches new series on AI’s impact on the energy sector

    where to be

    The University of Houston's Energy Transition Institute has launched a new Energy in Action Seminar Series that will feature talks focused on the intersection of the energy industry and digitization trends, such as AI.

    The first event in the series took place earlier this month, featuring Raiford Smith, global market lead for power & energy for Google Cloud, who presented "AI, Energy, and Data Centers." The talk discussed the benefits of widespread AI adoption for growth in traditional and low-carbon energy resources.

    Future events include:

    “Through this timely and informative seminar series, ETI will bring together energy professionals, researchers, students, and anyone working in or around digital innovation in energy," Debalina Sengupta, chief operating officer of ETI, said in a news release. "We encourage industry members and students to register now and reap the benefits of participating in both the seminar and the reception, which presents a fantastic opportunity to stay ahead of industry developments and build a strong network in the Greater Houston energy ecosystem.”

    The series is slated to continue throughout 2026. Each presentation is followed by a one-hour networking reception. Register for the next event here.

    ExxonMobil pauses plans for $7B hydrogen plant in Baytown

    project on pause

    As anticipated, Spring-based oil and gas giant ExxonMobil has paused plans to build a low-hydrogen plant in Baytown, Chairman and CEO Darren Woods told Reuters.

    “The suspension of the project, which had already experienced delays, reflects a wider slowdown in efforts by traditional oil and gas firms to transition to cleaner energy sources as many of the initiatives struggle to turn a profit,” Reuters reported.

    Woods signaled during ExxonMobil’s second-quarter earnings call that the company was weighing whether it would move forward with the proposed $7 billion plant.

    The Biden-era Inflation Reduction Act established a 10-year incentive, the 45V tax credit, for production of clean hydrogen. But under President Trump’s One Big Beautiful Bill Act, the period for beginning construction of low-carbon hydrogen projects that qualify for the tax credit has been compressed. The Inflation Reduction Act called for construction to begin by 2033. The Big Beautiful Bill changed the construction start time to early 2028.

    “While our project can meet this timeline, we’re concerned about the development of a broader market, which is critical to transition from government incentives,” Woods said during the earnings call.

    Woods had said ExxonMobil was figuring out whether a combination of the 45Q tax credit for carbon capture projects and the revised 45V tax credit would enable a broader market for low-carbon hydrogen.

    “If we can’t see an eventual path to a market-driven business, we won’t move forward with the [Baytown] project,” Woods told Wall Street analysts.

    “We knew that helping to establish a brand-new product and a brand-new market initially driven by government policy would not be easy or advance in a straight line,” he added.

    ExxonMobil announced in 2022 that it would build the low-carbon hydrogen plant at its refining and petrochemical complex in Baytown. The company had indicated the plant would start initial production in 2027.

    ExxonMobil had said the Baytown plant would produce up to 1 billion cubic feet of hydrogen per day made from natural gas, and capture and store more than 98 percent of the associated carbon dioxide. The plant would have been capable of storing as much as 10 million metric tons of CO2 per year.