seeing green

Houston energy transition leader to spearhead urban reforestation initiative

SCS Technologies named Jane Stricker, executive director of HETI, as the executive chairperson of its inaugural urban reforestation event next month. Photo via GHP

One of Houston's foremost energy transition leaders has been named to a community urban reforestation project from a Texas energy company.

Big Spring, Texas-based SCS Technologies named Jane Stricker, executive director of the Greater Houston Partnership’s Houston Energy Transition Initiative, as the executive chairperson of its inaugural urban reforestation event next month.

SCS, a provider of liquid hydrocarbon, water, and CO2 measurement systems, is holding the event on March 23 at the Galena Park Resource and Training Center in Galena Park, Texas, in collaboration with One Tree Planted and Trees for Houston.

“We are honored that Jane Stricker is spearheading our Galena Park tree-planting effort. As a revered leader in the energy transformation movement, Jane's impact is profound across Houston’s diverse energy sector and internationally,” Cody Johnson, CEO of SCS Technologies, says in a news release. “Jane's stewardship of this event underscores the vital importance of fostering partnerships between the community and industry to improve local environments and make strides in reducing our collective carbon footprint.

"Our donation of trees to the Galena Park area—a community just east of Houston materially affected by emissions from surrounding petrochemical plants—is one step towards environmental restoration and tree equity," he continues.

The goal for the event is to give out 1,125 shade, flowering, and fruit trees to community members, who will be asked to plant at their homes and businesses.

“The vast undertaking of the energy transformation requires more than just technological innovation; it demands a shared commitment from all sectors to enact real change. SCS Technologies is leading by example, demonstrating how innovative solutions and community-focused actions can drive meaningful change,” Stricker adds in the release. “As the executive chairperson, I am proud to be part of the Galena Park tree distribution event, an initiative that illustrates our shared dedication to environmental sustainability and community enrichment. The impact of these trees extends beyond carbon sequestration, bringing beauty and much-needed shade from our hot summer sun to the Galena Park community.”

The initiative is a part of SCS's goal to plant 100,000 trees in "economically challenged urban neighborhoods" across Texas, Oklahoma, and Louisiana by 2030. The company, per its environmental initiatives, is also participating in SME Net Zero by 2050.

Trending News

A View From HETI

Researchers Rahul Pandey, senior scientist with SRI and principal investigator (left), and Praveen Bollini, a University of Houston chemical engineering faculty, are key contributors to the microreactor project. Photo via uh.edu

A University of Houston-associated project was selected to receive $3.6 million from the U.S. Department of Energy’s Advanced Research Projects Agency-Energy that aims to transform sustainable fuel production.

Nonprofit research institute SRI is leading the project “Printed Microreactor for Renewable Energy Enabled Fuel Production” or PRIME-Fuel, which will try to develop a modular microreactor technology that converts carbon dioxide into methanol using renewable energy sources with UH contributing research.

“Renewables-to-liquids fuel production has the potential to boost the utility of renewable energy all while helping to lay the groundwork for the Biden-Harris Administration’s goals of creating a clean energy economy,” U.S. Secretary of Energy Jennifer M. Granholm says in an ARPA-E news release.

The project is part of ARPA-E’s $41 million Grid-free Renewable Energy Enabling New Ways to Economical Liquids and Long-term Storage program (or GREENWELLS, for short) that also includes 14 projects to develop technologies that use renewable energy sources to produce sustainable liquid fuels and chemicals, which can be transported and stored similarly to gasoline or oil, according to a news release.

Vemuri Balakotaiah and Praveen Bollini, faculty members of the William A. Brookshire Department of Chemical and Biomolecular Engineering, are co-investigators on the project. Rahul Pandey, is a UH alum, and the senior scientist with SRI and principal investigator on the project.

Teams working on the project will develop systems that use electricity, carbon dioxide and water at renewable energy sites to produce renewable liquid renewable fuels that offer a clean alternative for sectors like transportation. Using cheaper electricity from sources like wind and solar can lower production costs, and create affordable and cleaner long-term energy storage solutions.

“As a proud UH graduate, I have always been aware of the strength of the chemical and biomolecular engineering program at UH and kept myself updated on its cutting-edge research,” Pandey says in a news release. “This project had very specific requirements, including expertise in modeling transients in microreactors and the development of high-performance catalysts. The department excelled in both areas. When I reached out to Dr. Bollini and Dr. Bala, they were eager to collaborate, and everything naturally progressed from there.”

The PRIME-Fuel project will use cutting-edge mathematical modeling and SRI’s proprietary Co-Extrusion printing technology to design and manufacture the microreactor with the ability to continue producing methanol even when the renewable energy supply dips as low as 5 percent capacity. Researchers will develop a microreactor prototype capable of producing 30 MJe/day of methanol while meeting energy efficiency and process yield targets over a three-year span. When scaled up to a 100 megawatts electricity capacity plant, it can be capable of producing 225 tons of methanol per day at a lower cost. The researchers predict five years as a “reasonable” timeline of when this can hit the market.

“What we are building here is a prototype or proof of concept for a platform technology, which has diverse applications in the entire energy and chemicals industry,” Pandey continues. “Right now, we are aiming to produce methanol, but this technology can actually be applied to a much broader set of energy carriers and chemicals.”

Trending News