seeing green

Houston energy transition leader to spearhead urban reforestation initiative

SCS Technologies named Jane Stricker, executive director of HETI, as the executive chairperson of its inaugural urban reforestation event next month. Photo via GHP

One of Houston's foremost energy transition leaders has been named to a community urban reforestation project from a Texas energy company.

Big Spring, Texas-based SCS Technologies named Jane Stricker, executive director of the Greater Houston Partnership’s Houston Energy Transition Initiative, as the executive chairperson of its inaugural urban reforestation event next month.

SCS, a provider of liquid hydrocarbon, water, and CO2 measurement systems, is holding the event on March 23 at the Galena Park Resource and Training Center in Galena Park, Texas, in collaboration with One Tree Planted and Trees for Houston.

“We are honored that Jane Stricker is spearheading our Galena Park tree-planting effort. As a revered leader in the energy transformation movement, Jane's impact is profound across Houston’s diverse energy sector and internationally,” Cody Johnson, CEO of SCS Technologies, says in a news release. “Jane's stewardship of this event underscores the vital importance of fostering partnerships between the community and industry to improve local environments and make strides in reducing our collective carbon footprint.

"Our donation of trees to the Galena Park area—a community just east of Houston materially affected by emissions from surrounding petrochemical plants—is one step towards environmental restoration and tree equity," he continues.

The goal for the event is to give out 1,125 shade, flowering, and fruit trees to community members, who will be asked to plant at their homes and businesses.

“The vast undertaking of the energy transformation requires more than just technological innovation; it demands a shared commitment from all sectors to enact real change. SCS Technologies is leading by example, demonstrating how innovative solutions and community-focused actions can drive meaningful change,” Stricker adds in the release. “As the executive chairperson, I am proud to be part of the Galena Park tree distribution event, an initiative that illustrates our shared dedication to environmental sustainability and community enrichment. The impact of these trees extends beyond carbon sequestration, bringing beauty and much-needed shade from our hot summer sun to the Galena Park community.”

The initiative is a part of SCS's goal to plant 100,000 trees in "economically challenged urban neighborhoods" across Texas, Oklahoma, and Louisiana by 2030. The company, per its environmental initiatives, is also participating in SME Net Zero by 2050.

Trending News

A View From HETI

A team at the University of Houston is changing the game for sodium-ion batteries. Photo via Getty Images

A research lab at the University of Houston has developed a new type of material for sodium-ion batteries that could make them more efficient and boost their energy performance.

Led by Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, the Canepa Research Laboratory is working on a new material called sodium vanadium phosphate, which improves sodium-ion battery performance by increasing the energy density. Energy density is the amount of energy stored per kilogram, and the new material can do so by more than 15 percent. With a higher energy density of 458 watt-hours per kilogram — compared to the 396 watt-hours per kilogram in older sodium-ion batteries — this material brings sodium technology closer to competing with lithium-ion batteries, according to the researchers.

The Canepa Lab used theoretical expertise and computational methods to discover new materials and molecules to help advance clean energy technologies. The team at UH worked with the research groups headed by French researchers Christian Masquelier and Laurence Croguennec from the Laboratoire de Reáctivité et de Chimie des Solides, which is a CNRS laboratory part of the Université de Picardie Jules Verne, in Amiens France, and the Institut de Chimie de la Matière Condensée de Bordeaux, Université de Bordeaux, Bordeaux, France for the experimental work on the project.

The researchers then created a battery prototype using the new materia sodium vanadium phosphate, which demonstrated energy storage improvements. The material is part of a group called “Na superionic conductors” or NaSICONs, which is made to let sodium ions move in and out of the battery during charging and discharging.

“The continuous voltage change is a key feature,” Canepa says in a news release. “It means the battery can perform more efficiently without compromising the electrode stability. That’s a game-changer for sodium-ion technology.”

The synthesis method used to create sodium vanadium phosphate may be applied to other materials with similar chemistries, which could create new opportunities for advanced energy storage. A paper of this work was published in the journal Nature Materials.

"Our goal is to find clean, sustainable solutions for energy storage," Canepa adds. "This material shows that sodium-ion batteries can meet the high-energy demands of modern technology while being cost-effective and environmentally friendly."

Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, is leading a research project that can change the effectiveness of sodium-ion batteries. Photo courtesy of UH

Trending News