SCS Technologies named Jane Stricker, executive director of HETI, as the executive chairperson of its inaugural urban reforestation event next month. Photo via GHP

One of Houston's foremost energy transition leaders has been named to a community urban reforestation project from a Texas energy company.

Big Spring, Texas-based SCS Technologies named Jane Stricker, executive director of the Greater Houston Partnership’s Houston Energy Transition Initiative, as the executive chairperson of its inaugural urban reforestation event next month.

SCS, a provider of liquid hydrocarbon, water, and CO2 measurement systems, is holding the event on March 23 at the Galena Park Resource and Training Center in Galena Park, Texas, in collaboration with One Tree Planted and Trees for Houston.

“We are honored that Jane Stricker is spearheading our Galena Park tree-planting effort. As a revered leader in the energy transformation movement, Jane's impact is profound across Houston’s diverse energy sector and internationally,” Cody Johnson, CEO of SCS Technologies, says in a news release. “Jane's stewardship of this event underscores the vital importance of fostering partnerships between the community and industry to improve local environments and make strides in reducing our collective carbon footprint.

"Our donation of trees to the Galena Park area—a community just east of Houston materially affected by emissions from surrounding petrochemical plants—is one step towards environmental restoration and tree equity," he continues.

The goal for the event is to give out 1,125 shade, flowering, and fruit trees to community members, who will be asked to plant at their homes and businesses.

“The vast undertaking of the energy transformation requires more than just technological innovation; it demands a shared commitment from all sectors to enact real change. SCS Technologies is leading by example, demonstrating how innovative solutions and community-focused actions can drive meaningful change,” Stricker adds in the release. “As the executive chairperson, I am proud to be part of the Galena Park tree distribution event, an initiative that illustrates our shared dedication to environmental sustainability and community enrichment. The impact of these trees extends beyond carbon sequestration, bringing beauty and much-needed shade from our hot summer sun to the Galena Park community.”

The initiative is a part of SCS's goal to plant 100,000 trees in "economically challenged urban neighborhoods" across Texas, Oklahoma, and Louisiana by 2030. The company, per its environmental initiatives, is also participating in SME Net Zero by 2050.

Baker Hughes has made two grants to nonprofits looking to support a diverse workforce. Photo via bakerhughes.com

Houston-based Baker Hughes pledges $175,000 to nonprofits with diversity-focused initiatives

funds granted

The nonprofit arm of a Houston-based energy company has made two grants into organizations focused on supplier diversity.

Earlier this week, the Baker Hughes Foundation revealed details on a $75,000 grant to Houston Minority Supplier Development Council, or HMSDC, and a $100,000 grant to Washington, D.C.-based WEConnect International. HMSDC supports economic growth of minority-owned businesses, and WEConnect International is focused on women-owned companies.

“At Baker Hughes, supplier diversity is integral to our success, and it is our duty to support organizations that fuel building a more inclusive supply base and take the steps necessary to ensure business practices mirror our diverse landscape,” Lynn Buckley, Supplier Diversity and Business Development Sourcing leader, says in a news release.

HMSDC's grant will go toward creating a training program for minority entrepreneurs.

“We believe to close the equity gap in communities of color, we must ensure that diverse businesses understand and meet the business sustainability requirements of today’s corporate and government supply chains,” Ingrid M. Robinson, president of HMSDC, says in the release. “This grant allows us to share sustainability best practices with minority-owned businesses and help them develop and integrate sustainability focused policies and processes that will allow them to grow their businesses.”

Meanwhile, the funding for WEConnect International will be used on nationwide marketing campaigns and learnings systems to help grow the WEConnect network.

“We are thrilled to receive this generous grant from the Baker Hughes Foundation, which will enable us to expand our network of women-owned businesses and promote gender-inclusive procurement practices globally," Elizabeth A. Vazquez, CEO and co-founder of WEConnect International, says in the release. "We share Baker Hughes’ vision of advancing sustainable economic growth and reducing inequality, and we look forward to working together to create more opportunities for women entrepreneurs in the energy sector and beyond."

The Baker Hughes Foundation has made other contributions recently, including a grant towards One Tree Planted and a $100,000 grant to the University of Houston's Energy Transition Institute.

For the third time, the Baker Hughes Foundation has granted funding to One Tree Planted, totalling its impact to $1 million toward reforestation. Photo via onetreeplanted.org

Houston energy company triples down on funding to tree planting nonprofit with $1M total impact

reforestation station

Baker Hughes has doled out another grant for an organization that's growing a global impact.

The Baker Hughes Foundation announced its third grant to One Tree Planted, which is hoping to put 1 million new trees into the ecosystems of 17 countries. The foundation initially donated $250,000 to the organization in 2021 and followed up with a $350,000 grant in 2022. This most recent contribution, which was announced this week, did not disclose the monetary amount.

“This milestone speaks to our commitment to environmental sustainability, and I want to recognize the contributions of our employees, who last year came together across the world to plant trees in the areas where we work and live,” Baker Hughes Chairman and CEO Lorenzo Simonelli says in a news release. “I am grateful for their continued dedication to our sustainability goals and am inspired by what we and One Tree Planted can accomplish together.”

According to the company, Baker Hughes Foundation has contributed an impact of $1 million to One Tree Planted over the past three years. Its 2021 grant resulted in planting 268,000 trees, and in 2022, 350,000 trees were planted. With this latest grant, Baker Hughes adds 382,000 trees to that tally, targeting several areas where the company has a business presence, including the Andes region of South America; British Columbia, Canada; China; France; Germany; Scotland; and Texas, U.S.

“We all have a role to play in protecting the environment and combating climate change, and we admire the Baker Hughes Foundation’s continued dedication to being a force for good,” Matt Hill, founder of One Tree Planted, adds in the release. “With the Baker Hughes Foundation’s impressive commitment to giving back to the environment by planting 1 million trees to date, we are making a powerful impact for nature and communities in 17 countries around the world.”

Last month, the Baker Hughes Foundation doled out a $100,000 grant to the University of Houston Energy Transition Institute. The funding reportedly will work towards the ETI’s goals to support workforce development programs, and environmental justice research. The program addresses the impact of energy transition solutions in geographical areas most-affected by environmental impacts.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

UH's $44 million mass timber building slashed energy use in first year

building up

The University of Houston recently completed assessments on year one of the first mass timber project on campus, and the results show it has had a major impact.

Known as the Retail, Auxiliary, and Dining Center, or RAD Center, the $44 million building showed an 84 percent reduction in predicted energy use intensity, a measure of how much energy a building uses relative to its size, compared to similar buildings. Its Global Warming Potential rating, a ratio determined by the Intergovernmental Panel on Climate Change, shows a 39 percent reduction compared to the benchmark for other buildings of its type.

In comparison to similar structures, the RAD Center saved the equivalent of taking 472 gasoline-powered cars driven for one year off the road, according to architecture firm Perkins & Will.

The RAD Center was created in alignment with the AIA 2030 Commitment to carbon-neutral buildings, designed by Perkins & Will and constructed by Houston-based general contractor Turner Construction.

Perkins & Will’s work reduced the building's carbon footprint by incorporating lighter mass timber structural systems, which allowed the RAD Center to reuse the foundation, columns and beams of the building it replaced. Reused elements account for 45 percent of the RAD Center’s total mass, according to Perkins & Will.

Mass timber is considered a sustainable alternative to steel and concrete construction. The RAD Center, a 41,000-square-foot development, replaced the once popular Satellite, which was a food, retail and hangout center for students on UH’s campus near the Science & Research Building 2 and the Jack J. Valenti School of Communication.

The RAD Center uses more than a million pounds of timber, which can store over 650 metric tons of CO2. Aesthetically, the building complements the surrounding campus woodlands and offers students a view both inside and out.

“Spaces are designed to create a sense of serenity and calm in an ecologically-minded environment,” Diego Rozo, a senior project manager and associate principal at Perkins & Will, said in a news release. “They were conceptually inspired by the notion of ‘unleashing the senses’ – the design celebrating different sights, sounds, smells and tastes alongside the tactile nature of the timber.”

In addition to its mass timber design, the building was also part of an Energy Use Intensity (EUI) reduction effort. It features high-performance insulation and barriers, natural light to illuminate a building's interior, efficient indoor lighting fixtures, and optimized equipment, including HVAC systems.

The RAD Center officially opened Phase I in Spring 2024. The third and final phase of construction is scheduled for this summer, with a planned opening set for the fall.

Experts on U.S. energy infrastructure, sustainability, and the future of data

Guest column

Digital infrastructure is the dominant theme in energy and infrastructure, real estate and technology markets.

Data, the byproduct and primary value generated by digital infrastructure, is referred to as “the fifth utility,” along with water, gas, electricity and telecommunications. Data is created, aggregated, stored, transmitted, shared, traded and sold. Data requires data centers. Data centers require energy. The United States is home to approximately 40% of the world's data centers. The U.S. is set to lead the world in digital infrastructure advancement and has an opportunity to lead on energy for a very long time.

Data centers consume vast amounts of electricity due to their computational and cooling requirements. According to the United States Department of Energy, data centers consume “10 to 50 times the energy per floor space of a typical commercial office building.” Lawrence Berkeley National Laboratory issued a report in December 2024 stating that U.S. data center energy use reached 176 TWh by 2023, “representing 4.4% of total U.S. electricity consumption.” This percentage will increase significantly with near-term investment into high performance computing (HPC) and artificial intelligence (AI). The markets recognize the need for digital infrastructure build-out and, developers, engineers, investors and asset owners are responding at an incredible clip.

However, the energy demands required to meet this digital load growth pose significant challenges to the U.S. power grid. Reliability and cost-efficiency have been, and will continue to be, two non-negotiable priorities of the legal, regulatory and quasi-regulatory regime overlaying the U.S. power grid.

Maintaining and improving reliability requires physical solutions. The grid must be perfectly balanced, with neither too little nor too much electricity at any given time. Specifically, new-build, physical power generation and transmission (a topic worthy of another article) projects must be built. To be sure, innovative financial products such as virtual power purchase agreements (VPPAs), hedges, environmental attributes, and other offtake strategies have been, and will continue to be, critical to growing the U.S. renewable energy markets and facilitating the energy transition, but the U.S. electrical grid needs to generate and move significantly more electrons to support the digital infrastructure transformation.

But there is now a third permanent priority: sustainability. New power generation over the next decade will include a mix of solar (large and small scale, offsite and onsite), wind and natural gas resources, with existing nuclear power, hydro, biomass, and geothermal remaining important in their respective regions.

Solar, in particular, will grow as a percentage of U.S grid generation. The Solar Energy Industries Association (SEIA) reported that solar added 50 gigawatts of new capacity to the U.S. grid in 2024, “the largest single year of new capacity added to the grid by an energy technology in over two decades.” Solar is leading, as it can be flexibly sized and sited.

Under-utilized technology such as carbon capture, utilization and storage (CCUS) will become more prominent. Hydrogen may be a potential game-changer in the medium-to-long-term. Further, a nuclear power renaissance (conventional and small modular reactor (SMR) technologies) appears to be real, with recent commitments from some of the largest companies in the world, led by technology companies. Nuclear is poised to be a part of a “net-zero” future in the United States, also in the medium-to-long term.

The transition from fossil fuels to zero carbon renewable energy is well on its way – this is undeniable – and will continue, regardless of U.S. political and market cycles. Along with reliability and cost efficiency, sustainability has become a permanent third leg of the U.S. power grid stool.

Sustainability is now non-negotiable. Corporate renewable and low carbon energy procurement is strong. State renewable portfolio standards (RPS) and clean energy standards (CES) have established aggressive goals. Domestic manufacturing of the equipment deployed in the U.S. is growing meaningfully and in politically diverse regions of the country. Solar, wind and batteries are increasing less expensive. But, perhaps more importantly, the grid needs as much renewable and low carbon power generation as possible - not in lieu of gas generation, but as an increasingly growing pairing with gas and other technologies. This is not an “R” or “D” issue (as we say in Washington), and it's not an “either, or” issue, it's good business and a physical necessity.

As a result, solar, wind and battery storage deployment, in particular, will continue to accelerate in the U.S. These clean technologies will inevitably become more efficient as the buildout in the U.S. increases, investments continue and technology advances.

At some point in the future (it won’t be in the 2020s, it could be in the 2030s, but, more realistically, in the 2040s), the U.S. will have achieved the remarkable – a truly modern (if not entirely overhauled) grid dependent largely on a mix of zero and low carbon power generation and storage technology. And when this happens, it will have been due in large part to the clean technology deployment and advances over the next 10 to 15 years resulting from the current digital infrastructure boom.

---

Hans Dyke and Gabbie Hindera are lawyers at Bracewell. Dyke's experience includes transactions in the electric power and oil and gas midstream space, as well as transactions involving energy intensive industries such as data storage. Hindera focuses on mergers and acquisitions, joint ventures, and public and private capital market offerings.

Rice researchers' quantum breakthrough could pave the way for next-gen superconductors

new findings

A new study from researchers at Rice University, published in Nature Communications, could lead to future advances in superconductors with the potential to transform energy use.

The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials.

A team led by Rice’s Qimiao Si, the Harry C. and Olga K. Wiess Professor of Physics and Astronomy, used quantum Fisher information (QFI), a concept from quantum metrology, to measure how electron interactions evolve under extreme conditions. The research team also included Rice’s Yuan Fang, Yiming Wang, Mounica Mahankali and Lei Chen along with Haoyu Hu of the Donostia International Physics Center and Silke Paschen of the Vienna University of Technology. Their work showed that the quantum phenomenon of electron entanglement peaks at a quantum critical point, which is the transition between two states of matter.

“Our findings reveal that strange metals exhibit a unique entanglement pattern, which offers a new lens to understand their exotic behavior,” Si said in a news release. “By leveraging quantum information theory, we are uncovering deep quantum correlations that were previously inaccessible.”

The researchers examined a theoretical framework known as the Kondo lattice, which explains how magnetic moments interact with surrounding electrons. At a critical transition point, these interactions intensify to the extent that the quasiparticles—key to understanding electrical behavior—disappear. Using QFI, the team traced this loss of quasiparticles to the growing entanglement of electron spins, which peaks precisely at the quantum critical point.

In terms of future use, the materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

The team also found that quantum information tools can be applied to other “exotic materials” and quantum technologies.

“By integrating quantum information science with condensed matter physics, we are pivoting in a new direction in materials research,” Si said in the release.