major move

Houston company selects site for net-zero hydrogen production facility, low-carbon microgrid

This major project will include net-zero hydrogen production to be used onsite to fuel a microgrid, greenhouses, and more. Image courtesy of Fidelis New Energy

A Houston-based energy transition infrastructure firm has announced where it's planning to build a multiple-phase project that will produce carbon-neutral hydrogen and run a low-carbon microgrid.

Fidelis New Energy selected Mason County, West Virginia, as the site for its carbon neutral hydrogen production facility and low carbon microgrid —The Mountaineer GigaSystem and the Monarch Cloud Campus for data centers powered by net-zero hydrogen.

The facility will be using the company's the proprietary tech, called the FidelisH2, that produces hydrogen using "a combination of natural gas, renewable energy, and carbon capture, utilization, and sequestration," according to a news release.

The four-phase project is estimated to cost $2 billion per phase and will produce over 500 metric tons per day of net-zero carbon hydrogen. The first phase is expected to be completed in 2028.

"I am beyond excited that West Virginia will be the home of the Mountaineer GigaSystem and Monarch Cloud Campus," West Virginia Governor Jim Justice says in a news release. "West Virginia has a long history as an energy powerhouse for our nation, thanks to our hardworking people who know how to get the job done. And now, we're in a great position to make the most of a new fuel – hydrogen – through this incredible project in Mason County.

"There's simply no doubt that Fidelis is going to help shape the future of West Virginia in a major, major way by assisting in the commercial lift-off of some truly exciting new industries," he continues.

The project includes an incentive package from the West Virginia Department of Economic Development.

"The project's four-phase construction plan will not only provide substantial employment opportunities for the local workforce, with 800 full-time jobs and 4,200 construction workers, but it will also have a major positive impact on the region's economy," John Musgrave, the executive director of the Mason County Development Authority, says in the release. "The influx of workers and the establishment of the facility will bring additional business, industry, and new technology to Mason County, the state, and the surrounding region."

In addition to the hydrogen-producing FidelisH2 tool, Fidelis's suite of technologies includes H2PowerCool, which powers and cools data centers, and CO2PowerGrow, which is used for greenhouses to decarbonize and lower the cost of food production.

The new collaborative project is a rising amid the region's bid in the U.S. Department of Energy’s Office of Clean Energy Demonstrations for the regional clean hydrogen hub Funding Opportunity Announcement. The bid, called the Appalachian Regional Clean Hydrogen Hub, or ARCH2, was submitted earlier this year by a multi-state effort.

"Our proprietary net-zero solutions using only proven technologies are attracting significant commercial interest from hydrogen users, data center operators, and greenhouse owners," Bengt Jarlsjo, co-founder, president, and COO at Fidelis, says in the release. "This helps the ARCH2 hub to achieve scale across the hydrogen lifecycle from production through consumption."

Trending News

A View From HETI

A team at the University of Houston is changing the game for sodium-ion batteries. Photo via Getty Images

A research lab at the University of Houston has developed a new type of material for sodium-ion batteries that could make them more efficient and boost their energy performance.

Led by Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, the Canepa Research Laboratory is working on a new material called sodium vanadium phosphate, which improves sodium-ion battery performance by increasing the energy density. Energy density is the amount of energy stored per kilogram, and the new material can do so by more than 15 percent. With a higher energy density of 458 watt-hours per kilogram — compared to the 396 watt-hours per kilogram in older sodium-ion batteries — this material brings sodium technology closer to competing with lithium-ion batteries, according to the researchers.

The Canepa Lab used theoretical expertise and computational methods to discover new materials and molecules to help advance clean energy technologies. The team at UH worked with the research groups headed by French researchers Christian Masquelier and Laurence Croguennec from the Laboratoire de Reáctivité et de Chimie des Solides, which is a CNRS laboratory part of the Université de Picardie Jules Verne, in Amiens France, and the Institut de Chimie de la Matière Condensée de Bordeaux, Université de Bordeaux, Bordeaux, France for the experimental work on the project.

The researchers then created a battery prototype using the new materia sodium vanadium phosphate, which demonstrated energy storage improvements. The material is part of a group called “Na superionic conductors” or NaSICONs, which is made to let sodium ions move in and out of the battery during charging and discharging.

“The continuous voltage change is a key feature,” Canepa says in a news release. “It means the battery can perform more efficiently without compromising the electrode stability. That’s a game-changer for sodium-ion technology.”

The synthesis method used to create sodium vanadium phosphate may be applied to other materials with similar chemistries, which could create new opportunities for advanced energy storage. A paper of this work was published in the journal Nature Materials.

"Our goal is to find clean, sustainable solutions for energy storage," Canepa adds. "This material shows that sodium-ion batteries can meet the high-energy demands of modern technology while being cost-effective and environmentally friendly."

Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, is leading a research project that can change the effectiveness of sodium-ion batteries. Photo courtesy of UH

Trending News