the big winners

Local energy innovators recognized at annual Houston Innovation Awards

At an event celebrating Houston innovation, these four energy transition leaders were recognized. Photos courtesy

This week, the Houston innovation ecosystem celebrated big wins from the year, and members of the energy transition community were recognized alongside other innovators.

The Houston Innovation Awards honored over 40 finalists across categories, naming the 12 winners and honoring the two Trailblazer Legacy Awards at the event. The event, hosted at TMC Helix Park on November 14 named and celebrated the winners, which included four energy transition innovators.

Here's what energy leaders secured wins during the evening.

Corrolytics is a technology startup founded to solve microbiologically influenced corrosion problems for industrial assets. Co-founder and CEO Anwar Sadek says he's collected over $1 million in dilutive and non-dilutive funding from grants and other opportunities thanks to help from mentors. The company won both the Minority-Founded Business category and the People's Choice: Startup of the Year category.

"As a founder, I am always eager to assist and support fellow entrepreneurs, especially those navigating the unique challenges that come with being a BIPOC founder," he says. "With the guidance of mentors, I learned to master the complexities of the application process for grants and other funding opportunities. In turn, I actively share my experiences with other founders, helping them navigate similar paths."

Founded by CEO Cindy Taff, SageGeosystems is an energy company focused on developing and deploying advanced geothermal technologies to provide reliable power and sustainable energy storage solutions regardless of geography. The company secured the win in the Energy Transition Business category, alongside finalists Amperon, ARIX Technologies, Elementium Materials, InnoVent Renewables, and Tierra Climate.

"Sage Geosystems sets itself apart from competitors with its Geopressured Geothermal Systems, which can be deployed almost anywhere, unlike traditional geothermal technologies that require specific geographic conditions," Taff says. "This flexibility enables Sage to provide a reliable and virtually limitless power supply, making it ideal for energy-intensive applications like data centers."

A finalist in both the Investor of the Year and Ecosystem Builder categories, Juliana Garaizar is the founding partner of Energy Tech Nexus, invests with groups — such as Portfolia, Houston Angel Network, Business Angel Minority Association, and more — locally and beyond.

"I'm a hands on investor," she says. "I offer mentorship and industry and other investor connections. I take advisory roles and board observer seats."

This year, the Houston innovation community suffered the loss of two business leaders who left a significant impact on the ecosystem. Both individuals' careers were recognized with Trailblazer Legacy Awards.

One of the recipients was Scott Gale, executive director of Halliburton Labs, who received the award posthumously. He died on September 24. The award was decided on by the 2024 judges and InnovationMap. Gale was honored alongside Paul Frison, founder of the Houston Technology Center.

“I am immensely proud to honor these two remarkable individuals with the Trailblazer Award this year. It is fitting, as they represent two generations of building Houston’s ecosystem," 2023 Trailblazer Award recipient Brad Burke, managing director of the Rice Alliance and the associate vice president for industry and new ventures within Rice University's Office of Innovation, tells InnovationMap.

"Paul Frison was a pioneering leader who helped establish the Houston Technology Center and fostered the city’s tech ecosystem during the initial technology boom around the year 2000. Scott Gale, through his work at Halliburton Labs over the past five years, has been instrumental in launching Houston’s energy transition ecosystem," he continues. "Both have played pivotal roles in championing technology innovators.”

In honor of his son, Andrew Gale accepted the award with his daughter-in-law, Nicole, during the event.

Trending News

A View From HETI

A team at the University of Houston is changing the game for sodium-ion batteries. Photo via Getty Images

A research lab at the University of Houston has developed a new type of material for sodium-ion batteries that could make them more efficient and boost their energy performance.

Led by Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, the Canepa Research Laboratory is working on a new material called sodium vanadium phosphate, which improves sodium-ion battery performance by increasing the energy density. Energy density is the amount of energy stored per kilogram, and the new material can do so by more than 15 percent. With a higher energy density of 458 watt-hours per kilogram — compared to the 396 watt-hours per kilogram in older sodium-ion batteries — this material brings sodium technology closer to competing with lithium-ion batteries, according to the researchers.

The Canepa Lab used theoretical expertise and computational methods to discover new materials and molecules to help advance clean energy technologies. The team at UH worked with the research groups headed by French researchers Christian Masquelier and Laurence Croguennec from the Laboratoire de Reáctivité et de Chimie des Solides, which is a CNRS laboratory part of the Université de Picardie Jules Verne, in Amiens France, and the Institut de Chimie de la Matière Condensée de Bordeaux, Université de Bordeaux, Bordeaux, France for the experimental work on the project.

The researchers then created a battery prototype using the new materia sodium vanadium phosphate, which demonstrated energy storage improvements. The material is part of a group called “Na superionic conductors” or NaSICONs, which is made to let sodium ions move in and out of the battery during charging and discharging.

“The continuous voltage change is a key feature,” Canepa says in a news release. “It means the battery can perform more efficiently without compromising the electrode stability. That’s a game-changer for sodium-ion technology.”

The synthesis method used to create sodium vanadium phosphate may be applied to other materials with similar chemistries, which could create new opportunities for advanced energy storage. A paper of this work was published in the journal Nature Materials.

"Our goal is to find clean, sustainable solutions for energy storage," Canepa adds. "This material shows that sodium-ion batteries can meet the high-energy demands of modern technology while being cost-effective and environmentally friendly."

Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, is leading a research project that can change the effectiveness of sodium-ion batteries. Photo courtesy of UH

Trending News