climatetech heroes

Carbon capture co. with Houston presence receives prestigious sustainability recognition

Carbon Clean has secured a prominent global recognition. Photo via CarbonClean.com

A United Kingdom-headquartered carbon capture business with a growing presence in Houston has received a distinguishing honor that recognizes climatetech leaders.

Carbon Clean, which has expanded to the United States by way of Houston, has received the Sustainable Markets Initiative 2023 Terra Carta Seal. The distinguishment recognizes global companies that are helping to create a nature-positive future for the climate. This is part of the Sustainable Markets Initiative’s larger mandate to help provide a framework to accelerate the transition to a sustainable future by placing the planet and people first.

“The Sustainable Markets Initiative’s Terra Carta Seal recognises those companies which are taking great strides in delivering real-world outcomes," Jennifer Jordan-Saifi, CEO of Sustainable Markets Initiative, says in the release. "As we stand on the eve of COP28, public, private sector, and philanthropic actors will come together at the inaugural Business and Philanthropy Climate Forum to bridge the gap between ambition and action. It isexamples exemplified by the 2023 Terra Carta Seal winners that are helping to inspire and lead the way.”

The Terra Carta Seal was launched in 2021 during COP26 by His Majesty King Charles III when he was the Prince of Wales. An international panel of experts from the environmental, business, political and philanthropic worlds chose 17 global companies for the honor.

“We are honored to be recognized by the Sustainable Markets Initiative for our contribution to the global transition to net zero, “ says Aniruddha Sharma, chair and CEO of Carbon Clean, in a news release. “Carbon Clean’s mission is simple: to deliver cost-effective, space-saving, modular carbon capture technology, enabling hard-to-abate industries to decarbonise at scale.”

Carbon Clean aims to revolutionize industrial carbon capture with its CycloneCC, which solves large barriers to widespread adoption of industrial carbon capture: cost and space.The technology of CycloneCC will be key in the company’s goal to achieve net zero by 2050.

Carbon Clean develops carbon capture technology for customers such as cement producers, steelmakers, refineries, and waste-to-energy plants. The company bills its offering as the “world’s smallest industrial carbon capture technology.” CycloneCC can reduce the cost of carbon capture by as much as 50 percent with a footprint that’s 50 percent smaller than traditional carbon capture units, according to Carbon Clean. The UK company established its Houston location this year.

Last month, CycloneCC was selected by ADNOC for a carbon capture project at Fertiglobe’s plant located in the Ruways Industrial Complex, Abu Dhabi. The project is the first deployment of a 10 tonnes per day CycloneCC industrial unit.

Trending News

A View From HETI

Rice University scientists' “recharge-to-recycle” reactor has major implications for the electric vehicle sector. Photo courtesy Jorge Vidal/Rice University.

Engineers at Rice University have developed a cleaner, innovative process to turn end-of-life lithium-ion battery waste into new lithium feedstock.

The findings, recently published in the journal Joule, demonstrate how the team’s new “recharge-to-recycle” reactor recharges the battery’s waste cathode materials to coax out lithium ions into water. The team was then able to form high-purity lithium hydroxide, which was clean enough to feed directly back into battery manufacturing.

The study has major implications for the electric vehicle sector, which significantly contributes to the waste stream from end-of-life battery packs. Additionally, lithium tends to be expensive to mine and refine, and current recycling methods are energy- and chemical-intensive.

“Directly producing high-purity lithium hydroxide shortens the path back into new batteries,” Haotian Wang, associate professor of chemical and biomolecular engineering, co-corresponding author of the study and co-founder of Solidec, said in a news release. “That means fewer processing steps, lower waste and a more resilient supply chain.”

Sibani Lisa Biswal, chair of Rice’s Department of Chemical and Biomolecular Engineering and the William M. McCardell Professor in Chemical Engineering, also served as co-corresponding author on the study.

“We asked a basic question: If charging a battery pulls lithium out of a cathode, why not use that same reaction to recycle?” Biswal added in the release. “By pairing that chemistry with a compact electrochemical reactor, we can separate lithium cleanly and produce the exact salt manufacturers want.”

The new process also showed scalability, according to Rice. The engineers scaled the device to 20 square centimeters, then ran a 1,000-hour stability test and processed 57 grams of industrial black mass supplied by industry partner Houston-based TotalEnergies. The results produced lithium hydroxide that was more than 99 percent pure. It also maintained an average lithium recovery rate of nearly 90 percent over the 1,000-hour test, showing its durability. The process also worked across multiple battery chemistries, including lithium iron phosphate, lithium manganese oxide and nickel-manganese-cobalt variants.

Looking ahead, the team plans to scale the process and consider ways it can sustain high efficiency for greater lithium hydroxide concentrations.

“We’ve made lithium extraction cleaner and simpler,” Biswal added in the release. “Now we see the next bottleneck clearly. Tackle concentration, and you unlock even better sustainability.

Trending News