PETRONAS will use Carbon Clean's scalable CCS technology as a part of the agreement. Photo via carbonclean.com

Carbon Clean announced a new partnership with PETRONAS CCS Solution, a subsidiary of PETRONAS, to collaborate and evaluate Carbon Clean’s carbon capture and storage technology.

The two companies will assess carbon capture technology by aiming to “identify synergies and explore future collaboration opportunities,” according to a news release.The primary focus of the MOU is Carbon Clean's CycloneCC tech, which can reduce the installed cost of carbon capture by up to 50 percent. Both companies will collaborate to develop how the modular technology can be used for post-combustion CO2 capture.

“PETRONAS has a pioneering approach to decarbonization, viewing carbon capture as a lever to transform its business,” Aniruddha Sharma, chair and CEO of Carbon Clean, says in the release. “It is turning the low-carbon energy transition into an opportunity to drive green growth. Carbon Clean is proud to support PETRONAS in achieving its net zero targets by providing a cost-effective approach to carbon capture.”

The modular design assists with easily installation and makes it more efficient to integrate with operations that are already up and running. The physical footprint of CycloneCC occupies up to 50 percent less space than conventional carbon capture solutions. The equipment itself is 10 times smaller and includes rotating packed bed (RPB) technology that uses centrifugal force to make carbon capture process run more efficiently.

“CycloneCC’s modular design enables companies to stagger their investment, adding units in line with their decarbonization goals,” Sharma said in a news release. “We are making carbon capture logistically viable and easy to scale.”

Carbon Clean also has partnered with AGRA Industries, as the biofuel industry could use Carbon Clean’s CaptureX technology. The United Kingdom-based company operates its U.S. headquarters in the Ion.

Carbon Clean’s other customers include companies in the cement, steel, refinery, and energy-to-waste sectors. Among the investors in Carbon Clean are Chevron, Samsung Ventures, Saudi Aramco Energy Ventures, and WAVE Equity Partners. Since it's founding in 2019, the company has raised $260 million in funding, according to data platform Tracxn.

Carbon Clean says its tentative partnership with Merrill, Wisconsin-based AGRA Industries should speed up adoption of Carbon Clean’s CaptureX technology in the biofuel industry. Photo via CarbonClean.com

Houston co. enters new carbon capture collaboration focused on biofuels industry

cleaning up

Carbon Clean, a carbon capture company whose North American headquarters is in Houston, has forged a deal with a contractor to build modular carbon capture containers for the agricultural sector.

The company, based in the United Kingdom, says its tentative partnership with Merrill, Wisconsin-based AGRA Industries should speed up adoption of Carbon Clean’s CaptureX technology in the biofuel industry.

Carbon Clean’s technology has been installed at 49 sites around the world. Eighty percent of the sites have prefabricated modular carbon-capture containers, reducing construction and installation time.

The partnership will enable customers to capture CO2 released during the biofuel fermentation stage, enabling the production of fuels with lower carbon-intensity ratings. This will improve the ability of biofuel producers to claim federal tax credits, Carbon Clean says.

“Carbon Clean’s collaboration with AGRA Industries is a win-win for biofuel producers. Customers will benefit from the expertise of a leading agricultural engineering specialist and our modularized, innovative carbon capture technology that is cost-effective and simple to install,” Aniruddha Sharma, chair and CEO of Carbon Clean, says in a news release.

Carbon Clean’s customers include companies in the cement, steel, refinery, and energy-to-waste sectors.

Among the investors in Carbon Clean, founded in 2019, are Chevron, Samsung Ventures, Saudi Aramco Energy Ventures, and WAVE Equity Partners. To date, the company has raised $260 million in funding, according to data platform Tracxn.

This year’s CERAWeek occurred during an inflexion point in the U.S.’s conversation around decarbonization. Photo by Natalie Harms/InnovationMap

Clean energy founder shares key takeaways from CERAWeek 2024

guest column

Earlier this month, thousands converged on Houston for one of the world’s largest energy conferences – CERAWeek 2024. For five days global leaders, CEOs, oil and gas experts, and the industry’s top stakeholders gathered to provide insight, and discuss solutions, to some of the biggest questions on the future of energy.

Just this week, on the heels of the conference, it was hugely encouraging to see the U.S. Department of Energy (DOE) announce up to $6 billion for 33 projects across more than 20 states to decarbonize energy-intensive industries and reduce industrial greenhouse gas emissions. The announcement underscored the vitally important, and yet largely untapped role that industrial carbon capture must play in reaching the U.S.’s overall decarbonization goals. This must include significant point-source technology onsite at hard-to-abate industrial emitters like cement, metals and chemicals. The DOE announcement makes that priority clear, with the focus of the two largest grants for cement decarbonization projects going to carbon capture, each up to $500 million.

This was one of the major takeaways at this year’s CERAWeek: despite the success of the IRA, if we are to achieve the rapid scaling required to tackle emissions coming from hard-to-abate sectors, and now is the time to move rapidly into deployment, beginning with carbon capture demonstrations at industrial sites. Through our work with Chevron on the development of a carbon capture pilot for our CycloneCC technology on a gas turbine in San Joaquin Valley, California, we are proud to be doing exactly that.

While Carbon Clean has been active in the U.S. for several years, we chose to unveil our new Houston headquarters during last year’s CERAWeek, selecting the energy capital of the world for our U.S. home. With this increased focus on industrial decarbonization, the opportunities for carbon capture deployment in the U.S. – and more specifically Greater Houston – have significantly expanded. Since first opening the U.S. headquarters in Houston last year, we have grown our headcount by two-thirds and seen U.S. inquiries for our modular, point-source carbon capture solutions skyrocket by a further 59% (and this is after the initial leap in interest following the IRA’s passage).

Still, while a lot has been accomplished over the past year, we recognize that a lot more needs to be done to meet the country’s net zero targets, particularly in the space of industrial decarbonization. This was another takeaway at this year’s CERAWeek, a recognition that many industrial leaders have adopted ambitious net-zero goals but have no plans for implementation.

In conversations with many of this year’s conference attendees, one thing became abundantly clear: yes, the IRA was a breakthrough moment that provided key incentives for companies to enter the carbon capture space and develop the kinds of decarbonization technology that will reduce emissions. However, that only gets us half of the way there: we need to foster a market for the demand of clean industrial production, using the IRA as the vehicle to create that supply. Through the allocation of credits and increased pricing power, we can generate more demand from industrial emitters to embrace the kinds of technology that will enable them to reach net-zero.

Another critical next step: when it comes to adopting local industrial carbon capture projects, accelerate permitting by letting the states decide for themselves. The EPA’s recent decision to grant Louisiana the power to approve carbon capture projects could open the door to a wave of new project applications and additional states seeking the same authority.

If you want an example of a local economy poised to greatly benefit from expanded access to industrial carbon capture, look no further than Houston. With its energy expertise and local resources, Greater Houston is uniquely positioned to take full advantage of carbon capture’s promise, which will not only reduce the region’s emissions but grow jobs.

A recent study by the EFI Foundation, supported by Carbon Clean, identified Houston as an ideal location for a new coordinated regional approach to industrial carbon capture hubs. Previously, most studies on deployment focused on decarbonizing large emitters - the EFI report is focused on small-to-midsize emitters, as they account for 25 percent of America’s industrial emissions but are often overlooked given the cost and space barriers that have historically been barriers to the mass adoption of industrial carbon capture units.

Today, there are 311 facilities in the Houston cluster that fit the bill, representing 36.6 million metric tons of capturable CO2 emissions per year. Given that the region employs nearly a third of the nation’s jobs in oil and gas extraction alone, allowing multiple local emitters access to shared CO2 transport and storage would create a scalable solution at a lower cost. The business community should embrace the findings of this report, unlocking a key tool in combating local emissions, while also sustaining Houston’s workforce.

This year’s CERAWeek occurred during an inflexion point in the U.S.’s conversation around decarbonization. While a lot of progress is underway, it is imperative that energy leaders and the business community fully leverage industrial carbon capture technology if they are serious about reducing emissions at the source. Failure to do so recalls the aphorism by Benjamin Franklin: "Failing to plan is planning to fail.”

———

Aniruddha Sharma is the co-founder and CEO of Carbon Clean.

Carbon Clean has secured a prominent global recognition. Photo via CarbonClean.com

Carbon capture co. with Houston presence receives prestigious sustainability recognition

climatetech heroes

A United Kingdom-headquartered carbon capture business with a growing presence in Houston has received a distinguishing honor that recognizes climatetech leaders.

Carbon Clean, which has expanded to the United States by way of Houston, has received the Sustainable Markets Initiative 2023 Terra Carta Seal. The distinguishment recognizes global companies that are helping to create a nature-positive future for the climate. This is part of the Sustainable Markets Initiative’s larger mandate to help provide a framework to accelerate the transition to a sustainable future by placing the planet and people first.

“The Sustainable Markets Initiative’s Terra Carta Seal recognises those companies which are taking great strides in delivering real-world outcomes," Jennifer Jordan-Saifi, CEO of Sustainable Markets Initiative, says in the release. "As we stand on the eve of COP28, public, private sector, and philanthropic actors will come together at the inaugural Business and Philanthropy Climate Forum to bridge the gap between ambition and action. It isexamples exemplified by the 2023 Terra Carta Seal winners that are helping to inspire and lead the way.”

The Terra Carta Seal was launched in 2021 during COP26 by His Majesty King Charles III when he was the Prince of Wales. An international panel of experts from the environmental, business, political and philanthropic worlds chose 17 global companies for the honor.

“We are honored to be recognized by the Sustainable Markets Initiative for our contribution to the global transition to net zero, “ says Aniruddha Sharma, chair and CEO of Carbon Clean, in a news release. “Carbon Clean’s mission is simple: to deliver cost-effective, space-saving, modular carbon capture technology, enabling hard-to-abate industries to decarbonise at scale.”

Carbon Clean aims to revolutionize industrial carbon capture with its CycloneCC, which solves large barriers to widespread adoption of industrial carbon capture: cost and space.The technology of CycloneCC will be key in the company’s goal to achieve net zero by 2050.

Carbon Clean develops carbon capture technology for customers such as cement producers, steelmakers, refineries, and waste-to-energy plants. The company bills its offering as the “world’s smallest industrial carbon capture technology.” CycloneCC can reduce the cost of carbon capture by as much as 50 percent with a footprint that’s 50 percent smaller than traditional carbon capture units, according to Carbon Clean. The UK company established its Houston location this year.

Last month, CycloneCC was selected by ADNOC for a carbon capture project at Fertiglobe’s plant located in the Ruways Industrial Complex, Abu Dhabi. The project is the first deployment of a 10 tonnes per day CycloneCC industrial unit.

Carbon Clean develops carbon capture technology for customers such as cement producers, steelmakers, refineries, and waste-to-energy plants.

Clean tech co. with U.S. HQ selected for UAE carbon capture project

big win

Abu Dhabi National Oil Co. (ADNOC), the state-owned oil company of the United Arab Emirates, has chosen technology from United Kingdom-based company Carbon Clean for a carbon capture project in Abu Dhabi. Carbon Clean’s U.S. headquarters is in Houston.

Carbon Clean’s modular CycloneCC technology will be used for a carbon capture project at a Fertiglobe nitrogen fertilizer plant. Fertiglobe is a joint venture between ADNOC and OCI Global, a Netherlands-based chemical company.

“This project is hugely significant given it’s the first industrial deployment of our award-winning CycloneCC technology anywhere in the world,” says Aniruddha Sharma, chairman and CEO of Carbon Clean. “We are moving a step closer to achieving full commercialization of this modular solution, which will play a vital role in decarbonizing heavy industries and achieving net-zero targets.”

Carbon Clean develops carbon capture technology for customers such as cement producers, steelmakers, refineries, and waste-to-energy plants. The company bills its offering as the “world’s smallest industrial carbon capture technology.”

CycloneCC can reduce the cost of carbon capture by as much as 50 percent with a footprint that’s 50 percent smaller than traditional carbon capture units, according to Carbon Clean. The startup’s unit arrives ready to install and can be up and running in eight weeks.

The company established its Houston outpost earlier this year.

In 2022, Houston-based Chevron New Energies led the company’s $150 million series C round. Other contributors to the round were CEMEX Ventures, Marubeni, WAVE Equity Partners, AXA IM Alts, Samsung Ventures, Saudi Aramco Energy Ventures, and TC Energy. To date, Carbon Clean has raised $195 million.

Aniruddha Sharma of Carbon Clean weighs in on his North American expansion, the impact of the Inflation Reduction Act, and more. Photo via carbonclean.com

Why this UK carbon capture co. expanded to Houston, IRA's impact, and more

Q&A

Earlier this year, a growing carbon capture company announced its new North American headquarters in Houston. Now, the company is focused on doubling it's headcount before the end of 2023 to meet demand.

Carbon Clean, which has a technology that has captured nearly two million tons of carbon dioxide at almost 50 sites around the world, opened its new office in the Ion earlier this year. The company is now building out its local supply chain with plans to rapidly expand.

In an interview with EnergyCapital, Co-Founder, Chair, and CEO Aniruddha Sharma weighs in on the new office, how pivotal the Inflation Reduction Act has been for his company's growth, and the future of Carbon Clean.

EnergyCapital: Looking back on the past year since the Inflation Reduction Act was enacted, what has the impact been on Carbon Clean?

Aniruddha Sharma: The IRA did much to jolt industry, incentivizing investment in carbon capture, while also telegraphing that the US government is getting serious about bringing emissions down. Overnight, the US became Carbon Clean's biggest growth opportunity: inquiries from industrial emitters leapt a staggering 64 percent.

The impact of the IRA cannot be overstated for our industry, especially for point source carbon capture technology companies like Carbon Clean. The momentum created by the law's passage, along with our existing activity in North America, led to the opening of our US headquarters in Houston in March this year. We will double our US headcount to meet demand for CycloneCC, our breakthrough, fully modular carbon capture technology.

EC: What does the sector still need to see — in terms of support from the government — to continue to move the needle on the energy transition?

AS: There's much to admire in the way that the IRA incentivizes business. While it involves billions of dollars of public investment, it is set up in such a way that companies must make substantial investments first. IRA funding doesn't arrive on day one — it comes over several years and to get to the first dollar of funding, a company must secure considerable private investment first. In other words, every single dollar of the IRA funding is unlocking additional private investment, creating high-paying jobs, and bringing manufacturing back home.

Of course, a lot of additional investment still needs to happen, and for some harder-to-abate sectors additional policy measures may be required to enable deployment at scale. The IRA is just a first step, but what a giant step it promises to be.

EC: You recently opened Carbon Clean's HQ in Houston. What's next for your company in terms of growth — especially here in Houston?

AS: We're experiencing phenomenal growth globally, but we expect our expansion in North America to outpace all other regions. In line with this, we've seen a surge in interest from industrials across the US and our newly-opened Houston office will help us to meet this demand.

We are establishing a very significant base in the US — doubling our headcount this year — and we are developing a local supply chain to support the commercialization of our breakthrough modular technology, CycloneCC.

The potential for CycloneCC in the US and Houston area is huge. It is optimised for low to medium scale industrial emitters and recent Rice University research on the US Gulf Coast, for example, found that it is well suited to 73% of Gulf Coast emitters.

We're currently working with Chevron on a carbon capture pilot for our CycloneCC technology on a gas turbine in San Joaquin Valley, California. We expect to be announcing additional carbon capture projects in the US in the coming months.

------

This conversation has been edited for brevity and clarity.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston climatech company signs deal for massive carbon capture project in Malaysia

big deal

Houston-based CO2 utilization company HYCO1 has signed a memorandum of understanding with Malaysia LNG Sdn. Bhd., a subsidiary of Petronas, for a carbon capture project in Malaysia, which includes potential utilization and conversion of 1 million tons of carbon dioxide per year.

The project will be located in Bintulu in Sarawak, Malaysia, where Malaysia LNG is based, according to a news release. Malaysia LNG will supply HYCO1 with an initial 1 million tons per year of raw CO2 for 20 years starting no later than 2030. The CCU plant is expected to be completed by 2029.

"This is very exciting for all stakeholders, including HYCO1, MLNG, and Petronas, and will benefit all Malaysians," HYCO1 CEO Gregory Carr said in the release. "We approached Petronas and MLNG in the hopes of helping them solve their decarbonization needs, and we feel honored to collaborate with MLNG to meet their Net Zero Carbon Emissions by 2050.”

The project will convert CO2 into industrial-grade syngas (a versatile mixture of carbon monoxide and hydrogen) using HYCO1’s proprietary CUBE Technology. According to the company, its CUBE technology converts nearly 100 percent of CO2 feed at commercial scale.

“Our revolutionary process and catalyst are game changers in decarbonization because not only do we prevent CO2 from being emitted into the atmosphere, but we transform it into highly valuable and usable downstream products,” Carr added in the release.

As part of the MoU, the companies will conduct a feasibility study evaluating design alternatives to produce low-carbon syngas.

The companies say the project is expected to “become one of the largest CO2 utilization projects in history.”

HYCO1 also recently announced that it is providing syngas technology to UBE Corp.'s new EV electrolyte plant in New Orleans. Read more here.

Tackling methane in the energy transition: Takeaways from Global Methane Hub and HETI

The view from heti

Leaders from across the energy value chain gathered in Houston for a roundtable hosted by the Global Methane Hub (GMH) and the Houston Energy Transition Initiative (HETI). The session underscored the continued progress to reduce methane emissions as the energy industry addresses the dual challenge of producing more energy that the world demands while simultaneously reducing emissions.

The Industry’s Shared Commitment and Challenge

There’s broad recognition across the industry that methane emissions must be tackled with urgency, especially as natural gas demand is projected to grow 3050% by 2050. This growth makes reducing methane leakage more than a sustainability issue—it’s also a matter of global market access and investor confidence.

Solving this issue, however, requires overcoming technical challenges that span infrastructure, data acquisition, measurement precision, and regulatory alignment.

Getting the Data Right: Top-Down vs. Bottom-Up

Accurate methane leak monitoring and quantification is the cornerstone of any effective mitigation strategy. A key point of discussion was the differentiation between top-down and bottom-up measurement approaches.

Top-down methods such as satellite and aerial monitoring offer broad-area coverage and can identify large emission plumes. Technologies such as satellite-based remote sensing (e.g., using high-resolution imagery) or airborne methane surveys (using aircraft equipped with tunable diode laser absorption spectroscopy) are commonly used for wide-area detection. While these methods are efficient for identifying large-scale emission hotspots, their accuracy is lower when it comes to quantifying emissions at the source, detecting smaller, diffuse leaks, and providing continuous monitoring.

In contrast, bottom-up methods focus on direct, on-site detection at the equipment level, providing more granular and precise measurements. Technologies used here include optical gas imaging (OGI) cameras, flame ionization detectors (FID), and infrared sensors, which can directly detect methane at the point of release. These methods are more accurate but can be resource and infrastructure intensive, requiring frequent manual inspections or continuous monitoring installations, which can be costly and technically challenging in certain environments.

The challenge lies in combining both methods: top-down for large-scale monitoring and bottom-up for detailed, accurate measurements. No single technology is perfect or all-inclusive. An integrated approach that uses both datasets will help to create a more comprehensive picture of emissions and improve mitigation efforts.

From Detection to Action: Bridging the Gap

Data collection is just the first step—effective action follows. Operators are increasingly focused on real-time detection and mitigation. However, operational realities present obstacles. For example, real-time leak detection and repair (LDAR) systems—particularly for continuous monitoring—face challenges due to infrastructure limitations. Remote locations like the Permian Basin may lack the stable power sources needed to run continuous monitoring equipment to individual assets.

Policy, Incentives, and Regulatory Alignment

Another critical aspect of the conversation was the need for policy incentives that both promote best practices and accommodate operational constraints. Methane fees, introduced to penalize emissions, have faced widespread resistance due to their design flaws that in many cases actually disincentivize methane emissions reductions. Industry stakeholders are advocating for better alignment between policy frameworks and operational capabilities.

In the United States, the Subpart W rule, for example, mandates methane reporting for certain facilities, but its implementation has raised concerns about the accuracy of some of the new reporting requirements. Many in the industry continue to work with the EPA to update these regulations to ensure implementation meets desired legislative expectations.

The EU’s demand for quantified methane emissions for imported natural gas is another driving force, prompting a shift toward more detailed emissions accounting and better data transparency. Technologies that provide continuous, real-time monitoring and automated reporting will be crucial in meeting these international standards.

Looking Ahead: Innovation and Collaboration

The roundtable highlighted the critical importance of advancing methane detection and mitigation technologies and integrating them into broader emissions reduction strategies. The United States’ 45V tax policy—focused on incentivizing production of low-carbon intensity hydrogen often via reforming of natural gas—illustrates the growing momentum towards science-based accounting and transparent data management. To qualify for 45V incentives, operators can differentiate their lower emissions intensity natural gas by providing foreground data to the EPA that is precise and auditable, essential for the industry to meet both environmental and regulatory expectations. Ultimately, the success of methane reduction strategies depends on collaboration between the energy industry, technology providers, and regulators.

The roundtable underscored that while significant progress has been made in addressing methane emissions, technical, regulatory, and operational challenges remain. Collaboration across industry, government, and technology providers is essential to overcoming these barriers. With better data, regulatory alignment, and investments in new technologies, the energy sector can continue to reduce methane emissions while supporting global energy demands.

———

HETI thanks Chris Duffy, Baytown Blue Hydrogen Venture Executive, ExxonMobil; Cody Johnson, CEO, SCS Technologies; and Nishadi Davis, Head of Carbon Advisory Americas, wood plc, for their participation in this event.

This article originally appeared on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.

Houston battery recycling company signs 15-year deal to supply Texas flagship facility

green team

Houston- and Singapore-headquartered Ace Green Recycling, a provider of sustainable battery recycling technology solutions, has secured a 15-year battery material supply agreement with Miami-based OM Commodities.

The global commodities trading firm will supply Ace with at least 30,000 metric tons of lead scrap annually, which the company expects to recycle at its planned flagship facility in Texas. Production is expected to commence in 2026.

"We believe that Ace's future Texas facility is poised to play a key role in addressing many of the current challenges in the lead industry in the U.S., while helping the country meet the growing domestic demand for valuable battery materials," Nishchay Chadha, CEO and co-founder of Ace, said in a news release. "This agreement with OM Commodities will provide us with enough supply to support our Texas facility during all of its current planned phases, enabling us to achieve optimal efficiencies as we deploy our solutions in the U.S. market. With OM Commodities being a U.S.-based leader in metals doing business across the Americas and Asia with a specialty in lead batteries, we look forward to leveraging their expertise in the space as we advance our scale-up efforts."

The feedstock will be sufficient to cover 100 percent of Ace's phase one recycling capacity at the Texas facility, according to the statement. The companies are also discussing future lithium battery recycling collaborations.

"Ace is a true pioneer when it comes to providing an environmentally friendly and economically superior solution to recycle valuable material from lead scrap," Yiannis Dumas, president of OM Commodities, added in the news release. "We look forward to supporting Ace with lead feedstock as they scale up their operations in Texas and helping create a more circular and sustainable battery materials supply chain in the U.S."

Additionally, ACE shared that it is expected to close a merger with Athena Technology Acquisition Corp. II (NYSE: ATEK) in the second half of 2025, after which Ace will become a publicly traded company on the Nasdaq Stock Market under the ticker symbol "AGXI."

"As we continue to scale our lead and lithium battery recycling technologies to help support the markets for both internal combustion engines and electric vehicles, we expect that our upcoming listing will be a key accelerator of growth for Ace,” Chada said.