power purchase

Houston renewables developer and Google agree to second solar collaboration

Google will soon be able to pull from energyRe’s portfolio of more than 600 megawatts of new solar and solar storage projects in South Carolina. Photo via Pixabay

EnergyRe, a developer of large-scale renewable energy projects with headquarters in Houston and New York, has signed a renewable energy agreement that will allow Google to invest in and purchase renewable energy credits (RECs) from its projects under development in South Carolina.

Google will be able to pull from energyRe’s portfolio of more than 600 megawatts of new solar and solar storage projects in the state.

The agreement marks the second partnership between the companies. Last year, energyRe and Google signed a 12-year power purchase agreement in which Google would purchase renewable energy from a 435-megawatt solar project. EnergyRe would supply electricity and RECs generated from the solar project to Google to power the equivalent of more than 56,000 homes.

"Strengthening the grid by deploying more reliable and clean energy is crucial for supporting the digital infrastructure that businesses and individuals depend on," Amanda Peterson Corio, head of data center energy at Google, said in a news release. "Our collaboration with energyRe will help power our data centers and the broader economic growth of South Carolina."

EnergyRe's work includes developing high-voltage transmission, onshore and offshore wind, large-scale solar, distributed generation and storage assets in markets around the United States. Its national onshore utility-scale portfolio includes 1,520 megawatts of contracted solar assets and 398 megawatt-hours of contracted battery storage assets.

"This agreement is a milestone in energyRe's mission to develop innovative and impactful clean energy solutions for the future," Miguel Prado, CEO of energyRe, added in the news release."We're honored to partner with Google to help advance their ambitious sustainability and decarbonization objectives while delivering dependable, locally sourced clean energy to meet growing energy demands."

Google aims to achieve net-zero carbon emissions across its operations and value chain by 2030.

Trending News

A View From HETI

Houston researchers have uncovered why solid-state batteries break down and what could be done to slow the process. Photo via Getty Images.

A team of researchers from the University of Houston, Rice University and Brown University has uncovered new findings that could extend battery life and potentially change the electric vehicle landscape.

The team, led by Yan Yao, the Hugh Roy and Lillie Cranz Cullen Distinguished Professor of Electrical and Computer Engineering at UH, recently published its findings in the journal Nature Communications.

The work deployed a powerful, high-resolution imaging technique known as operando scanning electron microscopy to better understand why solid-state batteries break down and what could be done to slow the process.

“This research solves a long-standing mystery about why solid-state batteries sometimes fail,” Yao, corresponding author of the study, said in a news release. “This discovery allows solid-state batteries to operate under lower pressure, which can reduce the need for bulky external casing and improve overall safety.”

A solid-state battery replaces liquid electrolytes found in conventional lithium-ion cells with a solid separator, according to Car and Driver. They also boast faster recharging capabilities, better safety and higher energy density.

However, when it comes to EVs, solid-state batteries are not ideal since they require high external stack pressure to stay intact while operating.

Yao’s team learned that tiny empty spaces, or voids, form within the solid-state batteries and merge into a large gap, which causes them to fail. The team found that adding small amounts of alloying elements, like magnesium, can help close the voids and help the battery continue to function. The team captured it in real-time with high-resolution videos that showed what happens inside a battery while it’s working under a scanning electron microscope.

“By carefully adjusting the battery’s chemistry, we can significantly lower the pressure needed to keep it stable,” Lihong Zhao, the first author of this work, a former postdoctoral researcher in Yao’s lab and now an assistant professor of electrical and computer engineering at UH, said in the release. “This breakthrough brings solid-state batteries much closer to being ready for real-world EV applications.”

The team says it plans to build on the alloy concept and explore other metals that could improve battery performance in the future.

“It’s about making future energy storage more reliable for everyone,” Zhao added.

The research was supported by the U.S. Department of Energy’s Battery 500 Consortium under the Vehicle Technologies Program. Other contributors were Min Feng from Brown; Chaoshan Wu, Liqun Guo, Zhaoyang Chen, Samprash Risal and Zheng Fan from UH; and Qing Ai and Jun Lou from Rice.

Trending News