FlixBus and Greyhound have teamed up with global solar company Green Energy to install roof-mounted solar panels on its buses. Photo via FlixBus
Texas roadways will soon see buses with solar panels thanks to a new partnership.
FlixBus and Greyhound have teamed up with global solar company Green Energy to install roof-mounted solar panels on its buses. The companies will pilot the program with buses operating between Houston and Dallas.
“Expanding the use of solar panels on buses across the United States, FlixBus and Green Energy demonstrate how innovation, sustainability, and profitability can go hand-in-hand,” James Armstrong, president CEO of the Americas at Green Energy, says in a news release. “This partnership is a great example of how modern technology can contribute to a more sustainable future for the transportation and long-distance travel industry.”
Flix’s buses hope to cut carbon dioxide emissions, reduce idling, lower diesel consumption, and double battery life by utilizing solar technology. Also, using the charge controller with an Internet of Things solution will enable FlixBus to monitor diesel savings and carbon dioxide reduction, solar production, and also gather and analyze data for future improvements.
The initiative aligns with FlixBus's commitment to “advance sustainable and affordable travel for everyone,” according to the company. Plans are currently underway to expand this initiative to additional markets, with New Orleans also currently being used.
“Environmentally responsible operations are a core value for FlixBus, and we’ve been consistently pushing the boundaries of intercity transportation with innovative solutions that can help us reduce our impact,” Jay Miller, head of business development, west region at Flix North America, adds. “We’re thrilled to expand our partnership and bring this technology to the U.S. in yet another key step toward achieving our sustainability goals.”
FlixBus, a German company with its North American headquarters in Dallas, acquired Greyhound in 2021.
The pilot program will be a route between Houston and Dallas. Photo via Green Energy
ExxonMobil has upgraded its Permian Basin fleet of trucks with sustainability in mind.
The Houston-headquartered company announced a new pilot program last week, rolling out 10 new all-electric pickup trucks at its Cowboy Central Delivery Point in southeast New Mexico. It's the first time the company has used EVs in any of its upstream sites, including the Permian Basin.
“We expect these EV trucks will require less maintenance, which will help reduce cost, while also contributing to our plan to achieve net zero Scope 1 and 2 emissions in our Permian operations by 2030," Kartik Garg, ExxonMobil's New Mexico production manager, says in a news release.
ExxonMobil has already deployed EV trucks at its facilities in Baytown, Beaumont, and Baton Rouge, but the Permian Basin, which accounts for about half of ExxonMobil's total U.S. oil production, is a larger site. The company reports that "a typical vehicle there can log 30,000 miles a year."
At the end of last year, ExxonMobil increased its financial commitment to implementing more sustainable solutions. The company reported that it is pursuing more than $20 billion of lower-emissions opportunities through 2027.
Cowboys and the EVs of the Permian Basin | ExxonMobilyoutu.be
There’s a reason “carbon footprint” became a buzzword. It sounds like something we should know. Something we should measure. Something that should be printed next to the calorie count on a label.
But unlike calories, a carbon footprint isn’t universal, standardized, or easy to calculate. In fact, for most companies—especially in energy and heavy industry—it’s still a black box.
That’s the problem Planckton Data is solving.
On this episode of the Energy Tech Startups Podcast, Planckton Data co-founders Robin Goswami and Sandeep Roy sit down to explain how they’re turning complex, inconsistent, and often incomplete emissions data into usable insight. Not for PR. Not for green washing. For real operational and regulatory decisions.
And they’re doing it in a way that turns sustainability from a compliance burden into a competitive advantage.
From calories to carbon: The label analogy that actually works
If you’ve ever picked up two snack bars and compared their calorie counts, you’ve made a decision based on transparency. Robin and Sandeep want that same kind of clarity for industrial products.
Whether it’s a shampoo bottle, a plastic feedstock, or a specialty chemical—there’s now consumer and regulatory pressure to know exactly how sustainable a product is. And to report it.
But that’s where the simplicity ends.
Because unlike food labels, carbon labels can’t be standardized across a single factory. They depend on where and how a product was made, what inputs were used, how far it traveled, and what method was used to calculate the data.
Even two otherwise identical chemicals—one sourced from a refinery in Texas and the other in Europe—can carry very different carbon footprints, depending on logistics, local emission factors, and energy sources.
Planckton’s solution is built to handle exactly this level of complexity.
AI that doesn’t just analyze
For most companies, supply chain emissions data is scattered, outdated, and full of gaps.
That’s where Planckton’s use of AI becomes transformative.
It standardizes data from multiple suppliers, geographies, and formats.
It uses probabilistic models to fill in the blanks when suppliers don’t provide details.
It applies industry-specific product category rules (PCRs) and aligns them with evolving global frameworks like ISO standards and GHG Protocol.
It helps companies model decarbonization pathways, not just calculate baselines.
This isn’t generative AI for show. It’s applied machine learning with a purpose: helping large industrial players move from reporting to real action.
And it’s not a side tool. For many of Planckton’s clients, it’s becoming the foundation of their sustainability strategy.
From boardrooms to smokestacks: Where the pressure is coming from
Planckton isn’t just chasing early adopters. They’re helping midstream and upstream industrial suppliers respond to pressure coming from two directions:
Downstream consumer brands—especially in cosmetics, retail, and CPG—are demanding footprint data from every input supplier.
Upstream regulations—especially in Europe—are introducing reporting requirements, carbon taxes, and supply chain disclosure laws.
The team gave a real-world example: a shampoo brand wants to differentiate based on lower emissions. That pressure flows up the value chain to the chemical suppliers. Who, in turn, must track data back to their own suppliers.
It’s a game of carbon traceability—and Planckton helps make it possible.
Why Planckton focused on chemicals first
With backgrounds at Infosys and McKinsey, Robin and Sandeep know how to navigate large-scale digital transformations. They also know that industry specificity matters—especially in sustainability.
So they chose to focus first on the chemicals sector—a space where:
Supply chains are complex and often opaque.
Product formulations are sensitive.
And pressure from cosmetics, packaging, and consumer brands is pushing for measurable, auditable impact data.
It’s a wedge into other verticals like energy, plastics, fertilizers, and industrial manufacturing—but one that’s already showing results.
Carbon accounting needs a financial system
What makes this conversation unique isn’t just the product. It’s the co-founders’ view of the ecosystem.
They see a world where sustainability reporting becomes as robust as financial reporting. Where every company knows its Scope 1, 2, and 3 emissions the way it knows revenue, gross margin, and EBITDA.
But that world doesn’t exist yet. The data infrastructure isn’t there. The standards are still in flux. And the tooling—until recently—was clunky, manual, and impossible to scale.
Planckton is building that infrastructure—starting with the industries that need it most.
Houston as a launchpad (not just a legacy hub)
Though Planckton has global ambitions, its roots in Houston matter.
The city’s legacy in energy and chemicals gives it a unique edge in understanding real-world industrial challenges. And the growing ecosystem around energy transition—investors, incubators, and founders—is helping companies like Planckton move fast.
“We thought we’d have to move to San Francisco,” Robin shares. “But the resources we needed were already here—just waiting to be activated.”
The future of sustainability is measurable—and monetizable
The takeaway from this episode is clear: measuring your carbon footprint isn’t just good PR—it’s increasingly tied to market access, regulatory approval, and bottom-line efficiency.
And the companies that embrace this shift now—using platforms like Planckton—won’t just stay compliant. They’ll gain a competitive edge.
Listen to the full conversation with Planckton Data on the Energy Tech Startups Podcast:
Hosted by Jason Ethier and Nada Ahmed, the Digital Wildcatters’ podcast, Energy Tech Startups, delves into Houston's pivotal role in the energy transition, spotlighting entrepreneurs and industry leaders shaping a low-carbon future.
Houston climatech company Gold H2 completed its first field trial that demonstrates subsurface bio-stimulated hydrogen production, which leverages microbiology and existing infrastructure to produce clean hydrogen.
“When we compare our tech to the rest of the stack, I think we blow the competition out of the water," Prabhdeep Singh Sekhon, CEO of Gold H2 Sekhon previously told Energy Capital.
The project represented the first-of-its-kind application of Gold H2’s proprietary biotechnology, which generates hydrogen from depleted oil reservoirs, eliminating the need for new drilling, electrolysis or energy-intensive surface facilities. The Woodlands-based ChampionX LLC served as the oilfield services provider, and the trial was conducted in an oilfield in California’s San Joaquin Basin.
According to the company, Gold H2’s technology could yield up to 250 billion kilograms of low-carbon hydrogen, which is estimated to provide enough clean power to Los Angeles for over 50 years and avoid roughly 1 billion metric tons of CO2 equivalent.
“This field trial is tangible proof. We’ve taken a climate liability and turned it into a scalable, low-cost hydrogen solution,” Sekhon said in a news release. “It’s a new blueprint for decarbonization, built for speed, affordability, and global impact.”
Highlights of the trial include:
First-ever demonstration of biologically stimulated hydrogen generation at commercial field scale with unprecedented results of 40 percent H2 in the gas stream.
Demonstrated how end-of-life oilfield liabilities can be repurposed into hydrogen-producing assets.
The trial achieved 400,000 ppm of hydrogen in produced gases, which, according to the company,y is an “unprecedented concentration for a huff-and-puff style operation and a strong indicator of just how robust the process can perform under real-world conditions.”
The field trial marked readiness for commercial deployment with targeted hydrogen production costs below $0.50/kg.
“This breakthrough isn’t just a step forward, it’s a leap toward climate impact at scale,” Jillian Evanko, CEO and president at Chart Industries Inc., Gold H2 investor and advisor, added in the release. “By turning depleted oil fields into clean hydrogen generators, Gold H2 has provided a roadmap to produce low-cost, low-carbon energy using the very infrastructure that powered the last century. This changes the game for how the world can decarbonize heavy industry, power grids, and economies, faster and more affordably than we ever thought possible.”
HEXAspec, a spinout from Rice University's Liu Idea Lab for Innovation and Entrepreneurship, was recently awarded a $500,000 National Science Foundation Partnership for Innovation grant.
The team says it will use the funding to continue enhancing semiconductor chips’ thermal conductivity to boost computing power. According to a release from Rice, HEXAspec has developed breakthrough inorganic fillers that allow graphic processing units (GPUs) to use less water and electricity and generate less heat.
The technology has major implications for the future of computing with AI sustainably.
“With the huge scale of investment in new computing infrastructure, the problem of managing the heat produced by these GPUs and semiconductors has grown exponentially. We’re excited to use this award to further our material to meet the needs of existing and emerging industry partners and unlock a new era of computing,” HEXAspec co-founder Tianshu Zhai said in the release.
HEXAspec was founded by Zhai and Chen-Yang Lin, who both participated in the Rice Innovation Fellows program. A third co-founder, Jing Zhang, also worked as a postdoctoral researcher and a research scientist at Rice, according to HEXAspec's website.
"The grant from the NSF is a game-changer, accelerating the path to market for this transformative technology," Kyle Judah, executive director of Lilie, added in the release.