green fuels

Houston company to build renewable gasoline production facility in California

The facility is expected to produce approximately 7 million gallons of renewable gasoline and sequester over 100,000 metric tons of CO2 a year by 2027. Photo via verdecleanfuels.com

A Houston company has announced a new agreement to construct a renewable gasoline production facility on the West Coast. Once up and running, the site is expected to produce approximately 7 million gallons of renewable gasoline and sequester over 100,000 metric tons of CO2 a year by 2027.

Houston-based Verde Clean Fuels (Nasdaq: VGAS), which specializes in fuel production from renewable feedstocks or natural gas, shared earlier this month that it has entered into an agreement to build a gasoline production facility that will use sequestered carbon dioxide to produce about 21,000 gallons per day of renewable gasoline, according to a news release.

The Carbon Dioxide Management Agreement, or CDMA, is between Verde and a joint venture company called Carbon TerraVault, a subsidiary of California Resources Corp. (NYSE: CRC) and Brookfield Renewable (NYSE: BEP). The facility will be built at CRC’s existing Net Zero Industrial Park in Kern County, California. The agreement provides Verde 50 acres of leased space for the facility at CRC’s Net Zero Industrial Park at Elk Hills field on which to construct its facility.

“Traditional gasoline used today is refined from crude oil and makes up over half of greenhouse gas emissions generated by the U.S. transportation sector, the largest contributor to GHG emissions,” Ernest Miller, CEO of Verde, says in the release. “We believe our proprietary technology and scientific approach will further enable California’s consumers of gasoline to seamlessly and materially participate in the critical decarbonization of our atmosphere and help achieve California’s climate goals.

"Our partnership with CTV marks a significant step towards fulfilling our domestic growth ambitions and represents a concrete pathway to decarbonizing the transportation sector," he continues. "By teaming up with the leading carbon management business in the U.S., we are poised to make a substantial impact.”

According to the release, the impact of the production of 21,000 gallons per day of renewable gasoline is equivalent to removing around 22,000 cars off the road.

“Doubling the CO2 storage opportunities under CDMAs at our Net Zero Industrial Park at Elk Hills in a matter of eight months further underscores CRC’s carbon management strategy and dedication to energy transition in California,” Francisco Leon, CRC’s President and CEO, says in the release. “This new agreement between CTV JV and Verde Clean Fuels provides an innovative approach to renewable fuels at the heart of energy development in the state, and further validates CRC’s decarbonization efforts by a publicly traded company looking to expand in California.”

Trending News

A View From HETI

A team at the University of Houston is changing the game for sodium-ion batteries. Photo via Getty Images

A research lab at the University of Houston has developed a new type of material for sodium-ion batteries that could make them more efficient and boost their energy performance.

Led by Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, the Canepa Research Laboratory is working on a new material called sodium vanadium phosphate, which improves sodium-ion battery performance by increasing the energy density. Energy density is the amount of energy stored per kilogram, and the new material can do so by more than 15 percent. With a higher energy density of 458 watt-hours per kilogram — compared to the 396 watt-hours per kilogram in older sodium-ion batteries — this material brings sodium technology closer to competing with lithium-ion batteries, according to the researchers.

The Canepa Lab used theoretical expertise and computational methods to discover new materials and molecules to help advance clean energy technologies. The team at UH worked with the research groups headed by French researchers Christian Masquelier and Laurence Croguennec from the Laboratoire de Reáctivité et de Chimie des Solides, which is a CNRS laboratory part of the Université de Picardie Jules Verne, in Amiens France, and the Institut de Chimie de la Matière Condensée de Bordeaux, Université de Bordeaux, Bordeaux, France for the experimental work on the project.

The researchers then created a battery prototype using the new materia sodium vanadium phosphate, which demonstrated energy storage improvements. The material is part of a group called “Na superionic conductors” or NaSICONs, which is made to let sodium ions move in and out of the battery during charging and discharging.

“The continuous voltage change is a key feature,” Canepa says in a news release. “It means the battery can perform more efficiently without compromising the electrode stability. That’s a game-changer for sodium-ion technology.”

The synthesis method used to create sodium vanadium phosphate may be applied to other materials with similar chemistries, which could create new opportunities for advanced energy storage. A paper of this work was published in the journal Nature Materials.

"Our goal is to find clean, sustainable solutions for energy storage," Canepa adds. "This material shows that sodium-ion batteries can meet the high-energy demands of modern technology while being cost-effective and environmentally friendly."

Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, is leading a research project that can change the effectiveness of sodium-ion batteries. Photo courtesy of UH

Trending News