ripple effect

UH team develops method to use electricity to remove harmful carbon from ocean waters

UH assistant professor Mim Rahimi published a paper on the development of his lab's emerging negative emissions technology known as electrochemical direct ocean capture. Photo via UH.edu

Researchers at the University of Houston are developing a new, cost-effective way to help rid oceans of harmful carbon dioxide and fight the effects of climate change.

UH assistant professor Mim Rahimi published a paper on the development of his lab's emerging negative emissions technology known as electrochemical direct ocean capture (eDOC) in the journal Energy & Environmental Science this month.

The paper details how Rahimi's team is working to create electrochemical tubes to remove dissolved inorganic carbon from synthetic seawater, according to a release from UH. The process aims to amplify the ocean’s ability to absorb carbon and can easily be integrated into existing on-shore and off-shore infrastructure, including desalination plants and oil rigs.

Unlike other methods that involve complex processes, expensive materials and specialized membranes, the eDOC method focuses on adjusting the ocean water's acidity using affordable electrodes.

“While eDOC won’t single-handedly turn the tide on climate change, it enriches our mitigation toolkit,” Rahimi said in a statement. “In this global challenge, every innovative approach becomes invaluable.”

Rahimi's research is funded by a $250,000 grant from the U.S. Department of Energy and preliminary research was sponsored by UH Energy’s Center for Carbon Management in Energy.

“The promise of eDOC is undeniable, but scaling it, optimizing costs and achieving peak efficiency remain challenges we’re actively addressing,” he added in a statement.

Late last month, UH shared details on another carbon removal project it is involved with–this time focused on direct air capture (DAC). Known as the Pelican Gulf Coast Carbon Removal study–led by Louisiana State University and including UH and Shell—the project looks at the feasibility of a DAC hub that would pull carbon dioxide from the air and either store it in deep geological formations or use it to manufacture various products, such as concrete.

In August, UH announced that the project received nearly $4.9 million in grants, including almost $3 million from the U.S. Department of Energy. Click here to read more.

Trending News

A View From HETI

Rice Wind Energy had a strong showing at the DOE's 2025 Collegiate Wind Competition. Photo courtesy Rice University.

The student-led Rice Wind Energy team clinched second place overall at the U.S. Department of Energy’s 2025 Collegiate Wind Competition (CWC), which challenges students nationwide to design and build wind turbines, develop wind energy projects and engage in public outreach to promote renewable energy.

“The Collegiate Wind Competition is such an incredible opportunity for students passionate about sustainability to gain industry-applicable, hands-on experience in the renewable energy space,” senior and team vice president Jason Yang said in a news release.

The event was hosted by the National Renewable Energy Laboratories at the University of Colorado Boulder campus. Over 40 teams entered the competition, with just 12 advancing to the final stage. The competition comprises four core contests: connection creation, turbine design, turbine testing and project development.

Rice Wind Energy had the largest team with 26 students advancing to the final stage of the competition. It picked up a first-place win in the connection creation contest, and also placed third in the project development, fourth in turbine testing and fifth in turbine design contests.

“This accomplishment is a testament to our focus, teamwork and unwavering determination,” senior Esther Fahel, Rice Wind Energy’s 2024-25 president, said in a news release. “It’s a remarkable experience to have watched this team progress from its inception to the competition podium. The passion and drive of Rice students is so palpable.”

In the Connection Creation contest, the team hosted a wind energy panel with Texas Tech University, invited local high school students to campus for educational activities, produced a series of Instagram reels to address wind energy misconceptions and launched its first website.

The team also developed an autonomous wind turbine and floating foundation design that successfully produced over 20 watts of power in the wind tunnel. They were also one of just a few teams to complete the rigorous safety test, which brought their turbine to below 10 percent of its operational speed within 10 seconds of pressing an emergency stop button. It also designed a 450-megawatt floating wind farm located 38 kilometers off the coast of Oregon by using a multi-decision criteria matrix to select the optimal site, and conducted technical modeling.

“I am amazed at the team’s growth in impact and collaboration over the past year,” senior Ava Garrelts, the team’s Connection Creation lead for 2024-25, said in a news release. “It has been incredible to see our members develop their confidence by building tangible skills and lifelong connections. We are all honored to receive recognition for our work, but the entire experience has been just as rewarding.”

Rice faculty and industry sponsors included David Trevas and faculty advisers Gary Woods and Jose Moreto, Knape Associates, Hartzell Air Movement, NextEra Analytics, RWE Clean Energy, H&H Business Development and GE Vernova, Rice’s Oshman Engineering Design Kitchen, George R. Brown School of Engineering and Computing, Rice Engineering Alumni and Rice Center for Engineering Leadership.

The BYU Wind Energy Team took home the overall first-place prize. A team from the University of Texas at Dallas was the only other Texas-based team to make the 12-team finals.

Trending News